
Manuscript submitted for publication, Feb 25, 2007. Contact authors for status.

Exploring the Assistance Dilemma in Experiments with
Cognitive Tutors

Kenneth R. Koedinger
Vincent Aleven

Human-Computer Interaction Institute
Carnegie Mellon University

koedinger@cmu.edu, aleven@cs.cmu.edu

Abstract
Intelligent tutoring systems are highly interactive learning environments that have been
shown to improve upon typical classroom instruction. Cognitive Tutors are a type of
intelligent tutor based on cognitive psychology theory of problem solving and learning.
Cognitive Tutors provide a rich problem-solving environment with tutorial guidance in
the form of step-by-step feedback, specific messages in response to common errors, and
on-demand instructional hints. They also select problems based on individual student
performance. The learning benefits of these forms of interactivity are supported, to
varying extents, by a growing number of results from experimental studies. As Cognitive
Tutors have matured and are being applied in new subject-matter areas, they have been
used as a research platform and, particularly, to explore interactive methods to support
metacognition. We review experiments with Cognitive Tutors that have compared
different forms of interactivity and we reinterpret their results as partial answers to the
general question: How should learning environments balance information or assistance
giving and withholding to achieve optimal student learning? How best to achieve this
balance remains a fundamental open problem in instructional science. We call this
problem the “assistance dilemma” and emphasize the need for further science to yield
specific conditions and parameters that indicate when and to what extent to use
information giving versus information withholding forms of interaction.

Introduction
In designing learning environments that effectively support student learning, one faces
many choices with respect to the interactive and non-interactive features the system will
provide. While instructional options like text and video are non-interactive, they will
continue to have their place in learning environments (cf., Schwartz & Bransford, 1998).
Homework problems, learning-by-doing projects (e.g., Duch, Gron, Allen, 2001; Krajcik
& Starr, 2001) or self-explanation prompts (Chi, de Leeuw, Chiu, & LaVancher, 1994)
may seem to be more interactive forms of instruction than text and video, but they are not
in and of themselves interactive. They may facilitate interactive forms of learning, if the
student engages with them, but there is nothing about the instructional materials
themselves that contributes to the interaction. They are not dynamically responsive to an
individual student’s approach to a particular example or problem, nor to the difficulties
that an individual student may experience. The materials stay what they are.

Tutoring, on the other hand is a genuinely interactive form of instruction. Human one-on-
one tutoring is highly effective, with experienced tutors achieving a two standard
deviation improvement over classroom instruction (Bloom, 1984). Interactive learning
environments that mimic aspects of human tutors have been highly successful as well.
For instance, Intelligent Tutoring Systems have been shown to be highly effective in
improving students’ learning in real classrooms (VanLehn, 2006). Intelligent Tutors
draw on artificial intelligence technology to provide interactive instruction that adapts to
individual students’ needs and, most typically, supports student practice in learning
complex problem solving and reasoning. Among computer-based interactive learning
environments, intelligent tutoring systems are typically found toward the high end of the
interactivity spectrum. The interactive capabilities of these systems usually include step-
by-step feedback and hints that are specific to the particular solution path that a student
has chosen and to the particular step with which the student is experiencing difficulties.
Other forms of interactivity may be available as well, such as keeping track of students’
mastery of skills and concomitant individualized problem selection. Although we focus
on intelligent tutoring systems, our analytical framework, introduced next, is likely to
pertain to a broader range of instructional interventions including e-learning as well as
non-technology approaches.

Framework: Our view on what counts as interactivity

As an organizing framework throughout this paper, we classify kinds of instructional
techniques or events along two dimensions, summarized in Table 1. The first dimension
(represented by the rows in Table 1) concerns whether the information presented to or
requested of the student involves explicit verbal generalizations or whether it involves
instances or examples of such generalizations or activities that engage the use of them
without explicit expression of them. The second dimension (represented by the columns
in Table 1) concerns the direction of communication after the system presents a learning
task or learning materials to a student: whether or not the student responds to this initial
presentation, and if so, whether the system provides feedback on the student’s response.
The first column in Table 1 shows passive instructional events, like textbook descriptions
or worked examples, where the learner is presented information to process, but is not
requested to produce anything1. The second column shows active instructional events,
like asking students to solve problems or “self-explain” a worked example (Chi, Bassok,
Lewis, Reimann, & Glaser, 1989). Unlike passive instructional events, in active
instructional events some information is withheld and the student is required to fill in that
information, that is, give a response like a problem solution or self-explanation of an
example. The third column shows interactive instructional events, like problem-solving
practice with a tutor, that not only require a student response, but also provide feedback
on students’ responses, allow students to change responses, provide feedback on the
changes, and so on. This iteration of response, feedback, and potential response change

1 While texts come with an at least implicit request to have students try to understand them, they do not
explicitly request students to produce a written or spoken output. The student “learning event” that may
result from a passive instructional event may be active (e.g., taking notes), but passive instructional events
do not explicitly prompt for such activity.

and further feedback (or “feedforward” in the form of hints on how to proceed with the
problem) is a hallmark of interactive instruction. As in active instructional events, some
information is initially withheld from the learner. Unlike active instructional events, in
interactive instructional events additional information is later given, if the learner fails to
construct it him or herself.

Table 1: Examples of instructional events in terms of (see the columns) whether students must respond
(active) and get feedback (interactive) and (see the rows) whether the instruction involves or
encourages explicit verbal generalizations or whether it involves implicit instances of those
generalizations.

Non-interactive Interactive
Passive Active

Explicit, verbal
generalization

1. Description 2. Self-explanation 3. Self-explanation
with feedback

Implicit,
instances

4. Example 5. Unguided
practice

6. Tutored practice

Whether an instructional event is passive, active, or interactive does not guarantee that a
student will or will not interactively engage with it. Indeed, well-written texts can be
quite engaging and students can interact with them, for instance, after reading a later
sentence a new interpretation emerges that leads the student to reread a prior sentence to
check (get feedback on) that interpretation. However, the focus of our framework is on
first distinguishing differences in instructional methods themselves. The framework then
sets the stage for discussing whether and how such differences may cause students to
interactively engage or not.

The rows in Table 1 contrast more explicit verbal instructional events from more implicit,
instance-based ones. Explicit verbal instructional events involve the expression, by the
instructor or student, of generalizations or rules that describe or explain concepts and
principles in the domain. Implicit or instance-based kinds of instructional events, like
examples and practice activities, illustrate or demand the application of these general
concepts or principles sometimes without explicitly stating them. Instruction usually
involves combinations of cells in the rows and columns in Table 1 (that’s why we call
these cells instructional “events” rather than “methods”). For instance, traditional
textbook instruction tends to combine passive reading of general explicit descriptions of
concepts (cell 1, passive/explicit) followed by active practice with problem-solving
instances (cell 5, active/implicit). New forms of instruction like self-explanation
combine passive examples (cell 4, passive/implicit) followed by active explication of
generalizations (cell 2, active/explicit). The “action-generalization” principle
(Koedinger, 2002) combines instance-based problem solving (cell 5) followed by active
explication (cell 2).

The kinds of instructional events in Table 1 differ in terms of whether and how they give
or withhold information or assistance. Instruction would not be instruction if it did not
provide some information or assistance to students, but many lines of research and theory
suggest the importance of practice, learning by doing, self-testing during study, or, more
generally, requiring students to construct knowledge. These approaches involve
withholding information from students so that they can exercise, test, or reason toward
new knowledge on their own. For example, often textbooks provide explanations (cell
1), but in self-explanation (cell 2), the explanation is withheld and the student is asked to
provide one. Table 2 summarizes our view on the benefits and costs of information
giving versus information withholding.

Table 2. The Assistance Dilemma: Finding the balance between information or assistance giving and
withholding is a fundamental challenge in designing effective instruction.

Benefit Cost

Giving information or
assistance2

Accuracy
Efficiency of
communication
Thrill of (supported)
success

Shallow processing
Lack of attention
Does not engage LTM
Stealing chance to shine

Withholding
information or

assistance

Generation effect
Forces attention
Engages & structures LTM
Thrill of independent
success

Cost of errors
Floundering, confusion,
wasted time
Frustration of failure

Given the trade-offs between information giving and withholding, the instructional
designer faces the assistance dilemma. To what degree should an interactive learning
environment provide students with information relevant to their learning processes and
what are the most opportune moments for doing so? And when is student learning
supported more effectively by withholding information, either temporarily, until the
student has had an opportunity to generate or synthesize the information for themselves,
or even permanently? For example, what is the appropriate balance between passive
examples versus problem solving? Should students be given explanations or asked to
generate them themselves? Should feedback in interactive systems be immediate
(providing timely information) or delayed (withholding information to a later time)?
Should instructional hints be more specific or more general? Should they provide
informative descriptions of principles or examples that the student can use to infer those
principles themselves? Should information or problems on the same knowledge be
placed close to together (providing the student with assistance in retrieving information
from one problem to the next) or spaced more widely (withholding easy information
carry-over from one problem to the next)? Under what circumstances is guided problem
solving more effective than (pure or guided) discovery learning?

2 Since information giving vs. withholding seems a better description for non-interactive forms of
instruction, where as assistance giving vs. withholding seems a better description for interactive forms of
instruction, we use both terms.

The assistance dilemma is related to Bjork’s “desirable difficulties” and the notion that
while assisting performance during instruction can sometimes improve learning, in some
cases making performance more difficult during instruction improves learning (Schmidt
and Bjork, 1992). For instance, Paas and Van Merrienboer (1994) found, on one hand,
that worked examples made performance easier during instruction and led to better
learning and, on the other hand, that introducing variability in example and problem
content made performance harder during instruction but also led to better learning. The
explanation that worked examples reduce “extraneous” cognitive load that distracts from
learning whereas variability induces “germane” cognitive load that enhances learning is a
first step. However, this explanation begs the question of what forms of instruction yield
extraneous versus germane load. It does not resolve the assistance dilemma.

Several authors advocate more information/assistance giving (Kirschner,
Sweller, & Clark, 2006; Klahr & Nigam, 2004; Mayer, 2004), relative to more discovery
oriented, situated, or constructivist approaches (cf., Anderson, Reder, & Simon, 1996;
1998). While the experiments referenced in these papers represent progress toward
addressing the assistance dilemma, this work is not clear and precise enough about how
much more information/assistance to provide and under what circumstances. They do
not define clear boundaries for how much information giving is too much and when
information withholding is more effective. For example, Kirschner et al. state, “a worked
example constitutes the epitome of strongly guided instruction,” but they surely do not
mean to advocate that instruction should consist only of worked examples. Indeed, many
studies on worked examples show benefits of interleaving worked examples with
problem solving practice (assistance withholding) relative to all problem-solving practice
(e.g., Trafton & Reiser, 1993; Ward & Sweller, 1990). The extreme no-dilemma
position, that information giving is always better, would predict that all worked examples
would be better than interleaving worked examples and problem solving. We do not
know of such a direct comparison, though it seems unlikely to hold in general given
results like those of Trafton’s interleaving effect (Trafton & Reiser, 1993), expertise
reversal effect (Kalyuga, Chandler, Tuovinen, & Sweller, 2001), and generation effects
(Slamecka & Graf, 1978).

In this paper, we consider the assistance dilemma as it relates to Cognitive Tutors, a form
of interactive learning environments that have been shown to be highly successful in
improving students learning in a range of domains including high-school mathematics
(Koedinger, Anderson, Hadley, & Mark, 1997) and Lisp programming (Anderson,
Conrad, & Corbett, 1989). Cognitive Tutors grew out of an attempt to apply and test the
ACT-R theory of cognition and rely on cognitive psychology research in their design and
development (Anderson, Corbett, Koedinger, & Pelletier, 1995). Cognitive Tutors make
an interesting case study for two reasons: First, their designers (like those of all
interactive learning environments) have faced the assistance dilemma in various
manifestations and have proposed some methods for resolving it. Such methods have
some theoretical support, through application of the ACT-R theory of cognition and
learning (Anderson, 1993; Anderson & Lebiere, 1998), as well as empirical support from
a range of studies that evaluated both the effectiveness of the tutors as a whole and of
individual tutor features. Second, Cognitive Tutors (and intelligent tutoring systems

more generally) provide suitable testbeds for further research on the assistance dilemma.
We are only beginning to understand how to resolve the dilemma. It is quite likely that
there are better ways of resolving the dilemma than we have explored in Cognitive
Tutors. Other student-related and system-related factors may need to be considered.
Before we can establish a strong theory, a wider empirical base is needed. Cognitive
Tutors provide an attractive platform for such studies, given their presence in many
schools in the US and given the fact that they facilitate detailed logging of students’
learning events.

Thus, our program in this paper is as follows: After a brief overview of the Cognitive
Tutor technology, we re-cast some of the prior research involving Cognitive Tutors as
investigating the balancing of information giving and information withholding, and
consider whether this re-casting helps in formulating further hypotheses with respect to
this issue. Finally, we address potential additions to Cognitive Tutors that may better
address the assistance dilemma.

Table 3. Main elements of interactivity in Cognitive Tutors

1. Problem-solving environment, often with interactive tools
2. Tutorial guidance, in the form of

a. implicit yes-no feedback on correctness on a step-by-step basis
b. specific feedback messages for commonly-occurring errors
c. next-step hints (on demand or tutor initiated)

3. Adaptive problem selection based on student performance solving
problems with the tutor

Brief overview of Cognitive Tutors
Cognitive Tutors are interactive learning environments that provide various kinds of
assistance as students learn a complex cognitive skill through practice. Cognitive Tutors
for high-school mathematics and college-level genetics have been successful in real
educational settings, as detailed below. Cognitive Tutors for high-school math have also
been successful in the market place, with the Cognitive Tutor Algebra curriculum being
used in over 2,000 schools at the time of this writing (see http://carnegielearning.com).
All Cognitive Tutors share a set of interactive elements, listed in Table 3.

Each Cognitive Tutor provides the student with a rich problem-solving environment with
a variety of representational tools and presents authentic problem scenarios for the
student to solve. For example, the Algebra Cognitive Tutor, shown in Figure 1, provides
students with real-world scenarios that require algebraic reasoning, as well as various
tools, such as a worksheet, a grapher, and a symbolic equation solver (which can be
viewed by clicking on the Solver button in the upper right).

Figure 1. The Algebra Cognitive Tutor presents students with authentic problem scenarios (left) and a
problem-solving environment made up of representational tools including a table/spreadsheet (top),
graphing tool (bottom), and a symbolic equation solver (available by clicking on the Solver button at
the top). Instructional facilities include feedback on entries in these tools, hints on request (by clicking
on the “Hint” button at top), an on-line glossary (“Glossary” at top), and feedback on learning progress
(skill bar chart at top).

As students analyze the scenario, they enter intermediate steps into the tutor’s graphical
user interface as illustrated in Figure 2. The tutor provides implicit feedback on the
correctness of their steps, accepting correct steps without any fanfare and “flagging”
erroneous steps (see 2a). For certain errors that students commonly make, the tutor
presents an error feedback message that explains why the step is wrong (see 2b-c).

 (a)

(b)

(c)

Figure 2: Student-tutor interactions on the problem shown in Figure 1. (a) The student has made
correct entries in the Worksheet for the quantity names (time, height) and units (minutes, feet) for the
relationship described in the scenario. The tutor accepts multiple possible correct answers (e.g., “time”
could be “climbing time”) and multiple possible orders (e.g., time and height columns could be
swapped). The student has entered “t” to represent time and the incorrect expression “2t” for the
height. The tutor flags this error by turning the entry red and displaying the “!”. (b) Here the student
tries “67” and it is flagged as an error this time with a “?”. (c) The student rolls the mouse over the “?”
to display the error feedback message.

In addition to error feedback messages, at any point in the problem scenario, students can
request help from the tutor. The tutor presents hints that are specific to the solution
strategy taken by the student. Typically, multiple levels of hints are available, as shown
in Figure 3, with each giving progressively more specific advice. The hints explain which
problem-solving principle can be applied and how. The last hint in the sequence
(sometimes referred to as the “bottom-out hint”) often states what the next step should be
(i.e., provides the answer – or something close to it, such as an arithmetic or algebraic
expression that can be used to find the answer). For instance, the “bottom-out” hint
shown in Figure 3 is “Enter 2.5t + 67.0”. This message also illustrates how hints are
adapted to students’ solutions — here using the variable “t” that the student had earlier

entered as the expression for time. Had the student used a different name for the variable,
the hint would have referred to that variable. Some Cognitive Tutors provide hints
proactively when students make multiple errors on a step without requesting a hint.

Figure 3: After the student error illustrated in Figure 2b, the student requests a hint message by
clicking on the Hint button in the upper right. The hint message “Enter an expression to calculate …”
appears. If the student needs more help, she can click on the “Next Hint” button. All five levels of
hint are illustrated with the last “bottom-out” hint being “Enter 2.5t + 67.0”. (The tutor has only a
single hint window and displays only one hint level at a time within this window. The multiple hint
windows represent different content displayed in the hint window at different times.)

In addition to on-demand hints, many Cognitive Tutors provide an on-line glossary,
which contains definitions of terms as well as statements of important theorems and
definitions, often illustrated with an example. Figure 4 shows an example of a glossary
entry (see the bottom middle) in the Geometry Cognitive Tutor. The students can browse
the glossary freely. One motivation for adding the glossary is that general reference
resources like the glossary are part of doing math, not just of learning math.

Finally, Cognitive Tutors select problems for students on an individual basis. They keep
track of students’ knowledge growth over time in order to implement a mastery-learning
approach. The system tracks individual “knowledge components,” which include skills,
like knowing how to express a linear function in algebraic symbols, and concepts, like the
slope of a function. For each knowledge component targeted in the instruction, the tutor
maintains an estimate of the probability that an individual student has learned that
knowledge component, based on the student’s performance on the assigned problems.
The tutor uses the probability estimates to select problems on an individual basis. After a
student completes the required problems within any given curriculum section, the tutor
selects problems that involve knowledge components that the student has not mastered
yet, meaning that its probability estimate is below a pre-defined threshold, typically set to
.95. When all targeted knowledge components in the given curriculum section are
mastered, the student is promoted to the next section. The tutor keeps the student
informed about its assessment of their knowledge, displaying the estimates as a set of
“skill bars” (see top right in Figure 1). Knowledge components that are mastered are
ticked off in the skill bars pane and displayed in gold. The skill bars provide students
with an up-to-date measure of their progress through the tutor’s problem set. Students can
click on the small skill bar panel to see an enlarged version that contains a brief
descriptive phrase for each knowledge component.

Cognitive Tutors are grounded in the ACT-R theory of cognition (Anderson, 1993). They
were created partly as an effort to test key tenets of this theory. One of those tenets is that
a complex cognitive domain can be understood in terms of small knowledge components
called production rules that are learned independently of each other. Thus, each Cognitive
Tutor has a production rule model that explicitly represents the target competence that the
tutor is meant to help students acquire. The production rules are fine-grained condition-
action pairs that tie particular actions (such as writing out an intermediate result or final
answer) or subgoals to particular higher-level goals and context features. A model for a
complex domain like solving linear equations would typically contain several hundreds
of production rules, depending somewhat on the grain size with which knowledge
components are modeled (e.g., Koedinger & Corbett, 2005).

The production rule model provides the domain intelligence, that is the tutoring system’s
knowledge of algebra or geometry. The model enables the tutor to solve the same class
of problems that it asks students to solve. The tutoring intelligence comes from two
algorithms called model tracing and knowledge tracing. Model tracing uses the model to
interpret each student action and the follow students’ different strategies as they work
through problem scenarios. The results of model tracing are used to provide students
with correctness and error feedback and to individualize instructional advice to each
student’s particular reasoning steps or chosen strategy. An algorithm called knowledge
tracing is used to estimate how well an individual student has mastered each key
production rule. The results of knowledge tracing are used to determine a) the selection
of problems relevant to individual student needs and b) when the student has mastered the
all the knowledge components, the concepts and skills, in a curriculum unit.

Evidence in support of ACT-R’s notion of the production rule as the unit of procedural
knowledge comes from research that involves Cognitive Tutors (Anderson, 1993;
Anderson, Corbett, Koedinger, & Pelletier, 1995). In particular, a production rule
analysis was key in accounting for “learning curve” data generated from logs of students’
interactions with the Cognitive Tutor for LISP programming. Without using production
rules to guide analysis, these data do not yield a smooth learning curve, that is, there is
not a systematic decline in student error rate on successive actions they perform in
solving problems. However, when those actions are categorized in terms of the
corresponding production rules, a smooth learning curve is revealed consistent with the
overall improvement seen from pre-test to post-test. Error rate does not go down in the
generic curve because students are not learning “programming” as a large-grain general
skill, but in smaller production-rule-sized components. Later problems in a curriculum
require new ideas or production rules and students initially struggle with these new
production rules (error rate goes up). Students later show successive improvement (error
rate goes down) on actions involving the same production rules. These patterns provide
evidence that learning occurs at a grain size about the size of a production rule. Ohlsson
and Mitrovic (2006) have also applied this approach of using smooth learning curves as a
empirical method to zero in on the grain size of knowledge acquisition. They used
“constraints” instead of production rules as their unit of analysis, but the same pattern
emerges. Debates about knowledge representation aside, the key point is that the
knowledge components that students acquire, whether production rules, constraints,
skills, or concepts, are quite specific and differentiated.

Algorithms that support interactivity in Cognitive Tutors
The model-tracing algorithm evaluates the correctness of each student attempt at solving
a step by comparing the student’s step to the possible steps that the cognitive model
would take in the same situation. If the action taken by the student is among these
actions, the tutor provides implicit positive feedback, and the student is assumed to have
used the production rules that were used by the model to produce the given action. If a
student action corresponds to a production rule that models incorrect behavior, the tutor
provides negative feedback and presents an error feedback message associated with the
corresponding production rule (see Figure 2b-c). If the student action does not correspond
to any production, the tutor provides negative feedback without further explanation. The
model-tracing algorithm is used in a similar manner to provide hints upon a student’s
request. When the student requests a hint, the tutor selects one of the productions that
could apply to generate a next step at this point. A hint template attached to this
production is filled in with problem-specific information and then presented to the
student. Variants of this model-tracing technique are used in a number of other intelligent
tutoring systems, for example, the Andes tutor for physics (VanLehn et al., 2005) and the
SlideTutor for interpreting diagnostic images related to skin diseases (Crowley,
Legowski, Medvedeva, & Tseytlin, 2005; Crowley & Medvedeva, 2006).

A second major algorithm, knowledge tracing, maintains estimates of the probability that
the student knows each knowledge component in the model, represented by a key
production rule (Corbett & Anderson, 1995). The knowledge tracer uses information
provided by the model-tracing algorithm: when the student actions is correct, the

production rules involved in that correct action; when the student action is incorrect,
those that should have been used. For each step in a problem, the estimates of the relevant
knowledge components are updated (i.e., the production rules determined by the model-
tracing algorithm), contingent upon whether the student performed the step correctly on
her first attempt or whether she made an error or requested a hint. The updating
procedure is based on a simple Bayesian formula, which assumes that the student is in
one of two states with respect to a given production rule: the student either knows the rule
or not. The Bayesian formula expresses the probability that the student knows the
knowledge component as a function of three parameters, assumed to be fixed: (a) a
probability that a student learns the knowledge component as a result of encountering it
(once) in any given tutor problem, (b) a probability of guessing right even when the
knowledge component is not mastered, and (c) a probability of not getting the step right
even if the knowledge component is mastered. The knowledge-tracing procedure enables
the tutor to determine when a student is ready to move on to the next curriculum unit and,
before that, to select problems that give students more practice and instruction on un-
mastered knowledge components.

Characterizing the Interactive Elements of Cognitive Tutors
It is informative to compare Cognitive Tutors to various alternatives, along the
dimensions displayed in Table 1. We would place Cognitive Tutors squarely in the
Interactive column – we stress that the table in spite of its “discrete” character really
represents a continuum. With respect to the implicit/explicit dimension, some features
may be considered implicit learning (e.g., yes/no feedback), others exemplify a more
explicit instructional approach (e.g., principle-based hints). Along the interactivity
dimension, it may be clear that Cognitive Tutors are significantly more interactive than
alternatives such as having students solve textbook problems as homework, or having
them solve problems with the help of typical computer-assisted instruction (Eberts,
1997). A student who solves problems at the end of a textbook chapter receives feedback
only after the teacher has graded the solutions, a day later. Since there is feedback, the
instruction is Interactive, but it is low on the interactivity scale. Typical CAI systems are
more interactive: they offer feedback at the end of each problem. In addition to indicating
whether an overall problem solution is correct, they may provide short explanations with
respect to certain anticipated wrong answers. Cognitive Tutors are even more interactive.
Compared to these alternatives, the assistance provided by Cognitive Tutors is more
frequent, often more detailed, and more explicit. Cognitive Tutors offer feedback on
problem steps, not just final solutions. Further, they offer solution-specific step-by-step
hints and adaptive problem selection. These differences in interactivity are sometimes
analyzed in terms of nested (instructional) loops (VanLehn, 2006).

Compared to a skilled human tutor, often thought to be the most effective form of
instruction (Bloom, 1984), Cognitive Tutors are close in their level of interactivity. They
have much in common with the way human tutors support students as they work through
problems (Merrill, Reiser, Ranney, & Trafton, 1992), even if human tutors are capable of
more flexible dialogue with students and may have a wider range of instructional and
motivational strategies than Cognitive Tutors do (Lepper & Malone, 1987).

Related to the framework outlined in the introduction, it is interesting to consider how
Cognitive Tutors balance the giving and withholding of information. At first blush, it
may seem that Cognitive Tutors are heavy “information givers.” They provide yes/no
feedback after each attempt by a student at solving a step, sometimes accompanied by an
error feedback message. They also provide detailed solution-specific hints for each step.
However, Cognitive Tutors also withhold a considerable amount of information: First,
these systems present problems, not worked-out examples. It is up to the student to
generate the solution steps. Second, hints are given mainly at the student’s request, and
far less often, at the tutor’s initiative. Within hint sequences, information is revealed
gradually, with subsequent hint levels being displayed only when the student requests
more information. Also, there is an incentive for students not to ask for hints before their
first attempt at solving a step, namely, that such hint requests typically cause the tutor to
revise its estimate of their knowledge component mastery in the downward direction.
Third, even when yes/no feedback is provided, information is being withheld: the
feedback does not give the answer, for example. This combination of features was
thought to balance the benefits of information giving and withholding in a reasonable
way – see related discussion by Anderson (1993) and a summary by Aleven, Stahl,
Schworm, Fisher, and Wallace (2003).

The separate elements of this strategy are consistent to varying degrees with the ACT-R
theory, which has served as both a guide to Cognitive Tutor design and as a target for
insights from tutor experiments that have led to revisions in the theory. Learning by
doing (i.e., by solving problems) is a key tenet of the ACT-R theory (Anderson, 1993;
Anderson & Lebiere, 1998), which claims that production rules are acquired and
strengthened through use in problem solving and reasoning. In designing the Cognitive
Tutor feedback strategy, an overriding concern was to minimize floundering on the part
of students. Under the ACT-R theory, learning occurs when production rules are applied
successfully in the course of problem solving. Allowing students to spend extended time
to pursue incorrect paths does not contribute to this process and thus can waste valuable
learning time (see Anderson et al., 1995). To keep students focused on successful
learning experiences, Cognitive Tutors provide feedback immediately whenever a student
makes an error in attempting to apply a targeted knowledge component.

Since hints are given mostly at the student’s request, Cognitive Tutors rely on students to
find a good balance between the provision and withholding of explanatory information
(as opposed to yes/no feedback on the correctness of their solution steps). It was thought
that students would be in a better position than the tutor to judge when they could benefit
from more explicit information than that contained in the tutor feedback. For example,
after an error, it may be difficult for the tutor to judge whether the error is the result of a
fundamental difficulty or is simply a slip. A student may be in a better position to make
that judgment.

Empirical Support for Interactivity in Cognitive
Tutors

Two strands of empirical evidence support the interactive features found in Cognitive
Tutors: studies focused on the overall effectiveness of the tutors and the curricula of
which they are part, and studies focused on the effect of individual elements of
interactivity. Together, these studies make a strong case that Cognitive Tutors are highly
effective and that many interactive elements contribute to their overall effectiveness.
Other relevant research on related issues comes from the older computer-aided
instruction tradition, which has yielded similar conclusions and open questions (Eberts,
1997; Kluger & DeNisi, 1996). We re-interpret the studies focused on individual
interactive elements as investigating where the balance between information giving and
information withholding should lie, within a context of problem-solving practice. By
doing so we take a modest first step toward theory formation around this issue.

Overall effectiveness
Evaluations of the overall effectiveness of Cognitive Tutors show significant advantages
over common learning environments that do not involve computer tutors, such as
mathematics classroom instruction or a traditional programming environment for Lisp.
An early study of the Geometry Proof Tutor (a pre-cursor of the Geometry Cognitive
Tutor shown in Figure 4) in classrooms, showed large learning gains, due to the tutor, and
showed that students who had worked with this tutor scored about one standard deviation
better than students taught by the same teacher who did not work with the tutor
(Anderson et al., 1995). The benefit was not observed for students working with the tutor
in pairs, indicating that the tutors support individual learning more effectively than
collaborative learning. Further, early studies involving the Lisp Tutor showed 30%-43%
higher learning gains and 30%-64% more efficient learning, compared to working in a
standard Lisp programming environment (Anderson et al., 1995).

A number of studies have evaluated the effectiveness of the complete Cognitive Tutor
Algebra course. This year-long course combines text materials and classroom activities,
which students typically use for three days a week, and the Algebra Cognitive Tutor,
which they typically use two days a week. In studies in Pittsburgh and Milwaukee,
students in the Algebra Cognitive Tutor curriculum were compared to students in a
standard algebra curriculum (Koedinger et al., 1997). Students in the Cognitive Tutor
curriculum scored 15-25% higher on items taken from standardized tests and 50-100%
higher on test items that involved problem solving and the use of representations. A
number of subsequent studies, some of which were conducted by third parties, confirmed
the advantages of the Cognitive Tutor curriculum (Morgan & Ritter, 2002; Plano, 2004;
Sarkis, 2004; Schneyderman, 2001). In a number of these studies, the effect was
particularly pronounced for special education students, non-native speakers of English,
and low-income students (Plano, 2004; Sarkis, 2004). See also
http://www.carnegielearning.com/approach_research_reports.cfm. Data collected in the
Pittsburgh School District show that students taking a three-course sequence of Cognitive
Tutor Algebra, Geometry, and Algebra II, did 30% better on TIMMS test items and

227% better on a task involving real-world problem solving than did students in a
comparable school who took traditional courses. Finally, evaluations of the Cognitive
Tutor curricula for middle-school math also indicate that students learn better with the
Cognitive Tutor math curricula than with other curricula (Koedinger, 2002).

The studies discussed above provide evidence of the overall effectiveness of Cognitive
Tutors curricula, compared to other forms of instruction. They however do not show that
it is the tutors’ interactivity per se that causes the effect, given that there were a number
of additional differences between the Cognitive Tutor curricula and the comparison
curricula. In the next section we discuss a number of studies focused on individual
elements of interactivity that do allow for tighter causal attributions.

Interactivity 1: Immediate yes/no feedback

Although we have agued that good instruction should find an appropriate balance
between the giving and withholding of information, there is not as yet a strong theoretical
basis for predicting where the balance should lie – currently, finding the right balance is
an empirical question. Let us consider where the balance should lie immediately
following a student’s attempt at solving a step in a tutor problem.

As mentioned, in designing the Cognitive Tutors’ feedback strategy, an overriding
concern was to minimize students’ floundering in an attempt to detect and fix errors, for
which the ACT-R theory predicts no benefit. Therefore, Cognitive Tutors inform students
of the correctness of solution steps as soon as students enter them. One might wonder,
however, whether it would not be better to allow potential advantages of information
withholding to occur after students enter solution steps, for example by delaying the
feedback until it is clear that the student is not going to repair any errors they may have
made.

A study by Corbett and Anderson (1995), however, provided no support for the
effectiveness of information withholding via simple forms of delayed feedback. Using the
Lisp tutor, they compared four feedback conditions: immediate feedback (where
feedback is given immediately following a student’s attempt at solving a step, as in the
regular Cognitive Tutor), flag feedback (where the tutor flags errors but provides no
feedback messages until the student asks for them), on demand feedback (where errors
are not flagged until the student requests feedback), and no feedback (where feedback is
given only at the end of each programming exercise). They found that the three feedback
conditions led to better and faster learning compared to the no feedback condition. There
was no difference in the learning results between the three feedback conditions, but there
was a difference in the amount of time spent to complete a fixed set of problems. The
students in the immediate feedback condition did so the fastest, about three times faster
than the students in the no feedback condition. Somewhat surprisingly, the students in the
demand feedback condition did not request feedback very often. In 90% of the
programming exercises, they did not ask for feedback until they had reached a
preliminary solution.

This result provides strong experimental support for one of the key interactive features of
Cognitive Tutors, namely, the immediate provision of yes/no feedback after student
problem-solving steps. Withholding of this information was shown to be
counterproductive. On the other hand, the study result does leave open the possibility that
a different method of timing yes/no feedback is more successful. A study addressing this
issue is described in a later section of the paper.

Interactivity 2: Feedback content
If it is fruitful to provide yes/no feedback after problem-solving steps, how about
providing even more information? For example, the tutor could provide explanatory
feedback, in addition to yes/no feedback, in an effort to make the learning process more
“explicit” or to reduce floundering. But what kinds of explanations are most helpful in
this regard?

A study by McKendree (1990) varied the feedback content in the Geometry Proof Tutor
along two dimensions, which were crossed in a 2x2 design: whether the feedback
included goal information (i.e., pointed out the subgoal that the student should be
pursuing, if they made a wrong choice) and whether it included condition violation
information (i.e., pointed out an error in the way the student applied a chosen geometry
theorem or definition). She found that feedback with explanatory content supports
performance and learning better than yes/no feedback. The difference was statistically
significant for the post-test error rate and marginally significant for the error rate during
training. She found also that students who received explanatory feedback were more
likely to correct their errors on subsequent attempts than did students who only received
yes/no feedback. The advantages were strongest in the groups who received feedback on
goals.

A likely interpretation of the result is that the goal statements in the feedback messages
helped reduce floundering after errors. The better performance on the post-test suggests
perhaps that they also led to a more explicit learning process. (See also Anderson et al.,
1995, p. 191.) The result of the study suggests further that it is not necessary to be
concerned that meaningful feedback after errors is difficult to provide if the tutor does not
know the exact nature of the students’ difficulties (see the discussion above). Apparently,
when a good guess can be made about how to help students proceed with the current
problem, it is an effective strategy to provide that information. Different information may
be helpful in different domains. For example, in solving algebraic equations, it may be
helpful to provide goal information, but not in a situation where the next goal to work on
is obvious (e.g., in a worksheet-style interface). The broader conclusion however is that
giving more information after problem-solving errors than just yes/no feedback is helpful,
in particular if that information helps to reduce floundering or make learning more
explicit.

Interactivity 3: Hint content and timing
In contrast to feedback messages, which are given in reaction to a student’s previous
attempt at a problem-solving step, tutor hints provide information about the next step a
student may perform. Two questions about the current Cognitive Tutor approach to

providing hints are relevant: 1) are hints containing principle-based explanations effective
in supporting learning beyond hints that simply provide the next step? and 2) is it better
to provide hints on demand only (a kind of information withholding) or also for the tutor
to proactively provide hints? Although these questions have not been fully answered yet
by empirical studies, the tentative answer to the first question appears to be yes, and to
the second question appears to be no.

Anderson, Conrad, and Corbett (1989) conducted a study in which they evaluated the
effect of the tutor’s mastery learning method and of explanatory content in both the
tutor’s hints and its feedback messages. They compared the regular Lisp Tutor, which
provides explanatory content in its hints and in some of its error feedback messages, with
a version that simply told students they were wrong when they made errors, or gave them
the correct answer when they requested a hint. They found that explanatory messages
help students learn faster, but not better. They speculated that the students in the no
explanations condition, after seeing the answers provided by the system, were able to
generate their own explanations of the answers, but that it took extra time to do so.

Together, these studies provide suggestive evidence (albeit not decisive evidence) that the
content of on-demand hints can have an effect on students learning results. Aleven et al.
(2003) provide a review of similar results including studies by Schworm and Renkl
(2002) that showed that on-demand hints lead to better learning in a system for example
studying.

Given that principle-based explanations are effective, how can we make sure that
students get them when they need them? As mentioned, Cognitive Tutors give hints
primarily at the student’s request. Thus, it is the student (and not the system) who works
toward achieving an effective balance between information received and information
generated. It was thought that students would be better at doing so than computer tutors.
The evidence is mounting, however, that students are not good at seeking assistance or
information at the right time. The evidence stems both from middle-school and high-
school students (e.g., Aleven & Koedinger, 2000a; Aleven, McLaren, Roll, & Koedinger,
2006; Aleven et al., 2003;Baker, Corbett, Koedinger, & Wagner, 2004; Koedinger &
Anderson, 1993). For example, log data from the Geometry tutor indicate that students
frequently use bottom-out hints to obtain answers, without reading prior hints that explain
why the answer is what it is. Other forms of poor help seeking were quite frequent as
well. For example, even after multiple errors on a step, students often do not request help.
These results contradict the notion that students may be better able than the system to
decide when they can benefit from the tutor’s help messages. It is hard for them to
request help at the right time, just as it is hard for them, as we saw above, to request
feedback at the right time.

There are a number of different ways of thinking about the design implications of these
findings. The first is to redesign the tutor so that it achieves a better balance between
withholding and providing problem-solving hints, for example by making it provide more
information proactively after problem-solving errors. The second is to focus on helping
students learn to create a better balance for themselves. For example, the system could

provide remedial instruction to mitigate the negative effects of poor help-seeking
decisions (“gaming” the system) (e.g.,Baker, Corbett, Koedinger, & Wagner, 2004).
Alternatively, one could extend the tutor so that it provides tutoring not just with respect
to domain-specific knowledge components (e.g., algebra or geometry) but also with
respect to students’ help-seeking skills (Aleven et al., 2006; Baker, Corbett, Koedinger,
Evenson, Roll, et al., 2006; Roll, Aleven, McLaren, Ryu, Baker, et al. 2006). The aim of
this kind of metacognitive instruction is for students to learn to balance, themselves,
when to seek information and assistance versus when to try to think on their own. If that
ability can be successfully acquired in a domain-general transferable way, it would
enable students to do better in learning environments that do not provide a good balance
between information-giving and information-withholding. This tough challenge for tutor
designers is discussed further below.

Interactivity 4: Knowledge component assessment and mastery
learning

The third main form of interactivity in Cognitive Tutors (see Table 3) is the mastery
learning method. It represents a form of assistance giving that involves choosing
problems for students to solve as opposed to students choosing problem themselves. (It is
information giving at the metacognitive level.) As mentioned, Cognitive Tutors select
problems on an individual basis, focusing on knowledge components that the student has
not mastered yet, until sufficient evidence has accumulated that the student masters all
knowledge components targeted in a given curriculum section. Three studies provide
evidence of the effectiveness of the tutor’s mastery learning method, suggesting that
information providing at the meta-cognitive level is a good thing to do.

Mastery learning is of course not new with Cognitive Tutors (e.g., Bloom, 1984; Guskey,
1987), although its implementation in Cognitive Tutors is different from most other
implementations in that students’ mastery is evaluated on an individual basis and with
respect to detailed knowledge components (Anderson et al., 1995). Thus, the main
question addressed in the studies of mastery learning in Cognitive Tutors is whether
individual mastery learning focused on production rules as the units of learning is
successful, and whether the tutor’s particular implementation of this idea is adequate.
Specifically, whether the model-tracing and knowledge-tracing algorithms working in
tandem assess a student’s skill accurately and whether the tutor’s problem selection
algorithm selects appropriately difficult problems.

Two early studies involving the Lisp Cognitive Tutor showed that the tutor’s mastery
learning method leads to improved learning (Anderson et al., 1989; Corbett & Anderson,
1995). In these studies, a version of the tutor with the mastery learning approach was
compared against a version that assigned a fixed set of tutor problems to all students,
regardless of their performance. The students in the mastery condition had significantly
higher learning gains, confirming that the tutor was successful in assigning extra
problems that were not redundant with what the students knew already. A third study
took into account the time that students spent. The study showed that the mastery
approach leads to large learning gains at the cost of only very little extra time spent

(Corbett, 2001). An interesting finding from this study is that the students in the mastery
learning condition solve many more problems, but spend almost no extra time.

The three studies described above provided ample evidence that the mastery-learning
mechanism is an effective way of improving student learning, without great cost in terms
of time spent. Thus, they indicate that information giving at the meta-cognitive level can
be effective. As a practical matter, the mastery learning method is a valuable addition to
Cognitive Tutor technology. It is used in both the Algebra and Geometry Cognitive
Tutors (see Figures 1 and 4). In addition to supporting individualized problem selection,
the mastery learning mechanism helps provide students with a goal to work for, namely,
to get their skill bars ticked off by the tutor. Also, the mastery-level criterion discourages
a “gaming” strategy by which students repeatedly ask for hints until the next problem-
solving step is revealed to them. Under the mastery-level criterion, this strategy yields
short-term success only. It helps in getting through the problem at hand, but it will lead
the tutor to assign more problems later on. Students typically are aware of that fact,
although that does not always stop them from using this strategy. It remains an open
question for future experimentation whether displaying the skill bars provides
motivational and learning benefits above and beyond the benefits of knowledge tracing
for problem selection and pacing.

Implications
The studies presented above provide strong evidence for the effectiveness of Cognitive
Tutors over other forms of instruction, including typical classroom instruction. They also
support the main interactive features listed in Table 3 (yes/no feedback, on-demand hints,
and mastery learning). With respect to the information giving/withholding dimension, the
results of the studies on yes/no feedback, feedback content, and hint timing consistently
indicate that giving information after a problem-solving step is better than withholding it.
This conclusion should not be interpreted as sweeping support for information giving in
general, because it is important to recall that these strategies were evaluated in a context
in which students were engaged in active problem solving, which is an important kind of
information/assistance withholding. Instead, these techniques for tutored problem
solving provide a particular approach to effective balancing of giving and withholding.
The Corbett et al. study showed that immediate yes/no feedback is better than no
feedback or delayed feedback. The McKendree study showed that explanatory error
feedback is better than just yes/no feedback. Finally, the study on hint use confirms that
on-demand hints are often not used as intended by students. Generalizing beyond the
specifics of the studies, it seems implied that within a context of tutored problem solving,
information should be withheld very sparingly and that subsequent research on improving
tutored problem solving may be more successful if it focuses on methods to give more
information rather than methods to withhold it.

Enhancing Cognitive Tutors: What does and
does not work

Should worked examples be added to cognitive tutors?
Given numerous laboratory results showing benefits of alternating worked examples with
problem solving over problem solving alone (Atkinson, Derry, Renkl, & Wortham, 2000;
Renkl, 2002; Sweller & Cooper, 1985; Trafton & Reiser, 1993; Zhu & Simon, 1987), we
began to wonder whether Cognitive Tutors, which have students performing problem
solving, might be enhanced by adding worked examples. Santosh Mathan (2003) began
investigating the addition of worked examples within a Cognitive Tutor for Excel
Programming3. Given the passive nature of worked examples (cell 4 in Table 1,
passive/implicit), Mathan decided to create a more active form of worked example
whereby students were told the steps to perform, but were required to answer questions
about reasoning toward these steps and perform the steps themselves. These
“walkthroughs,” as Mathan called them, require activity on the students’ part and
included feedback. They thus belong in the interactive column of Table 1. He found
increased learning due to walkthroughs in two of four comparisons and no difference in
the other two. The results suggest benefits of adding such interactive worked examples
to Cognitive Tutors in certain situations. However, they were not a necessary part of the
conditions that achieved the best results in Mathan’s studies (discussed further below).

In a more direct adaptation of successful laboratory results on worked examples,
McLaren, Lim, Gagnon, Yaron, & Koedinger (2006) inserted worked examples between
tutored problems in a Cognitive Tutor for chemistry. In contrast to numerous prior
studies, they found no benefit for the addition of these worked examples. Students in the
problem-solving condition learned just as much as those in the interspersed worked-
example and problem-solving condition. This result was replicated with both college and
high school students and thus, appears to not be a consequence of an “expertise-reversal
effect” whereby the benefits of examples fade and reverse as students develop expertise
(Kalyuga, Chandler, Tuovinen, & Sweller, 2001). It appears the key difference is that in
prior studies, the problem-solving or practice activities did not involve regular feedback
(they are active, but not interactive), whereas in the McLaren study the problem-solving
activity was tutored, that is interactive.

Tables 1 and 2 can be used to interpret the difference in the results. In the prior studies,
combining worked examples and problem-solving practice (the passive/implicit and
active/implicit cells 4 and 5 in Table 1) improves on problem-solving practice alone (cell
5, active/implicit) because the combination represents a better mix of information giving
(examples) and withholding (practice). Problem-solving practice alone has too many of

3 This effort was not the first to incorporate examples in Cognitive Tutors as the original LISP tutor had
hypercard declarative instruction and examples interspersed with problem-solving practice in the tutor.
Use of worked examples in the Cognitive Tutor Algebra course, both in text materials and in the tutor, were
discouraged by our collaborating instructors (cf., Koedinger et al., 1997) because it was thought that urban
students, if they processed the examples at all, would do so shallowly, which would impede deeper
conceptual understanding that might better come from classroom discussion and collaborative projects.

the costs of information withholding (Table 2) – without having a good sense for what
are the correct domain knowledge components (operators, concepts, principles or
strategies) students flounder and make too many errors. This interpretation is similar to
the “extraneous cognitive load” explanation provided by others (Clark & Mayer, 2003;
Paas & Van Merrienboer, 1994; Sweller, 1988). However, what is extraneous in this
interpretation is not the reasoning needed during problem solving per se, as posited by
Sweller (1988), but the errors and non-productive search that occur due to lack of
available information on correct domain knowledge.

In contrast, in the McLaren et al. (2006) study, worked examples are not added to
unsupported problem-solving practice, but to tutored problem-solving practice. Because
the tutored problem-solving practice group (interactive/implicit cell 6 in Table 1) gets
feedback on their errors and can request hints if needed, they too have a mix of
information/assistance giving and withholding. Information is withheld while students
are successfully engaging in problem solving, but the potential error/floundering cost of
withholding is reduced because students are immediately cued when they make errors.
Further, the benefits of information giving are present because accurate and timely
information is provided, through hints at the students’ request (which often follows an
error). In the context of tutored practice as opposed to untutored practice, the
information-giving benefits of worked examples may essentially be redundant. In
essence, the tutor dynamically converts a problem-solving experience into an annotated
worked example when the student is having enough trouble such that they request the
final “bottom-out” level of hint that tells them what to do next.

To summarize, while untutored problem solving practice may suffer from not enough
information giving for beginning learners, interactive tutoring of problem solving may
provide sufficient information, in the form of immediate step-based feedback, just when
students need it. Relative to tutored problem solving, the information giving in
interleaved worked example study may be superfluous in beginning learning and may tip
into too much information giving in later learning.

In contrast to the McLaren result, Schwonke, Wittwer, Aleven, Salden, Krieg, and Renkl
(in press) found a benefit of adding worked examples to the Geometry Cognitive Tutor,
but with a twist. To adjust information giving/withholding to learners’ growing
competence, they implemented a gradual transition from example study to problem
solving in the form of “faded” worked examples (Renkl, Atkinson, & Große, 2004).
Students first see an example, where answers to all problem steps are given, and then in
subsequent examples the answers to steps are gradually taken away or “faded” as so as to
convert examples into problems. Both example steps and problem-solving steps are
interactive (or tutored). On the example steps, students are asked to explain the worked-
out steps and receive feedback on their explanations (see the next section on self-
explanation). Students in the faded-example condition learned more efficiently, taking
significantly less instructional time to achieve better post-test outcomes on declarative
knowledge and equal outcomes on procedural knowledge (Schwonke et al., in press).
These results highlight the possibility that in interactive instruction that involves
interleaving examples and problems, it may be better for beginning learners to have

information-giving examples come before information-withholding problems. And then
transition to tutoring, where examples follow problems in the form of as-needed hints, as
learners begin to develop greater independent competence on targeted knowledge
components.

Exploring Self-explanation in Cognitive Tutors
Perhaps one of the most important findings regarding learning and instruction in the past
20 years is the role of “self-explanation” in effective learning of complex reasoning and
problem solving. Chi et al. (1989) found that poor learners of physics skim worked-
examples in textbooks and make shallow analogies when solving homework problems
whereas good learners try to explain to themselves the reasoning from one step to the
next and then make deeper analogies during problem-solving practice. In terms of Table
1, while implicit example-based induction is powerful for learning (cell 4,
passive/implicit), it can be enhanced by the more explicit rule-based reasoning behind
self-explanation (cell 2, active/explicit). VanLehn, Jones, and Chi (1992) provided a
computational model of good versus poor learners in terms of how good learners are
more likely to try to fill the gap between steps in an example by chaining together
existing, perhaps intuitive, knowledge to derive the result of the step.

Prompting students to self-explain has been shown in laboratory studies to enhance
learning (Atkinson et al., 2003; Chi, de Leeuw, Chiu, & LaVancher,1994; Renkl, Stark,
Gruber, & Mandl, 1998; Siegler, 2002). Self-explanation support has also been shown to
be effective in classroom use (Aleven & Koedinger, 2002) and has “gone to scale” as it is
implemented as part of the Cognitive Tutor Geometry course. Such benefits can be
successfully implemented in a computer-interpretable form (explaining by reference to
names of reasons in a glossary, which is essentially a long menu) that facilitates
automatic feedback on the correctness of those explanations.

We can contrast self-explanation without feedback (cell 2 in Table 1, active/explicit) with
self-explanation with feedback (cell 3, interactive/explicit). Most past studies have
prompted for self-explanations without providing students with feedback on whether or
not those self-explanations are correct and accurate. They typically involve the presence
of an experimenter in a one-on-one interpersonal setting. This setting produces social
demands for the student to comply with the request that they try to self-explain. Self-
explanation without feedback may work in this lab setting because of the presence of the
experimenter and the implicit “demand characteristics” on the student to make an effort.

Figure 4: Support for self-explanation in the Geometry Cognitive Tutor. In problem scenarios such as
the one shown at the top left, students compute angle measures and explain their answers, with
feedback from the tutor, in the worksheet at the top right. To explain each step, they enter the name of
a geometry theorem or definition that was applied. They can either type the name or select it from the
tutor’s glossary of geometry knowledge, shown at the bottom. In the example shown above, the student
entered “triangle sum” as the reason for one of their steps. After the tutor’s feedback indicates that the
explanation is wrong (by means of a “!” and red font), a hint from the tutor (shown at the student’s
request in the window just below the worksheet) reveals the correct reason.

In contrast, compliance may be reduced in a classroom or homework setting where
students do not have an adult nearby. Indeed, we created a new self-explanation version
of the Geometry Cognitive Tutor where students were prompted to type principle-based
self-explanations (e.g., “the angles in a triangle sum to 180”) instead of referencing a
reason in glossary. In an initial pilot study in a high school (Aleven & Koedinger,
2000b), students were not given feedback on their explanations and we found they only
rarely made reasonable attempts at explanations (less than 10% of the time) and instead
often provided inadequate explanations, and even more often gave off-task explanation
responses like “because I said so”.

These students appear to be missing the motivation, self-discipline, or meta-cognitive
skills to seriously engage in self-explanation without feedback. For such students,
interactive forms of instruction that provide feedback may be fairly critical to keeping
them on task. It may be that for more motivated and better-prepared students, feedback
on self-explanations is not necessary.

Indeed, the best students learn reasonably effectively (though perhaps not as efficiently as
possible4) from passive forms of instruction like textbook descriptions and examples
(cells 1 and 4 in Table 1). Can we help poor students become better learners through
more direct forms of metacognitive instruction (cf., Schoenfeld, 1983; White &
Frederiksen, 1998)? As described in the next section, we have been exploring this
question in the context of Cognitive Tutors.

Other Cognitive Tutor Studies of Metacognitive Support

Improving learning through error self-detection and correction
Despite the successful demonstration of immediate feedback in the LISP tutor study
described above, many have been critical of the notion of immediate feedback in tutors.
To some, immediate feedback seems to play the assistance dilemma too much in the
direction of assistance giving. In fact, some critics view Cognitive Tutors as being on the
information/assistance-giving end of a simple dichotomy – a view that is oversimplified
as indeed tutors that provide immediate feedback during problem-solving practice
withhold more information than textbooks or worked-examples. Nevertheless, it is
possible that immediate feedback is stealing from students an opportunity to learn to
detect their own errors and to learn from them5 (Schmidt & Bjork, 1992).

Using the Cognitive Tutor for Excel described above, Mathan and Koedinger (2005)
explored whether a particular form of delayed feedback can improve student learning.
They reinterpreted the feedback debate as being more about the “model of desired
performance” that is the goal of instruction than about the delay between student
response and tutor feedback. In contrast to the goal of producing error-free experts, one
might want to produce “intelligent novices” who may make initial errors, but are able to
detect them and correct them. If immediate feedback is given relative to an intelligent
novice model of desired performance (where certain initial errors are allowed, provided
that the student catches them right away), it will appear delayed in comparison to
immediate feedback relative to an expert model of desired performance (where all errors
get immediate feedback). Students learned more from the intelligent novice tutor. Why?
It was probably not by improving meta-cognitive “evaluative” skills (as Schmidt and
Bjork call them). We would expect such skills to be acquired gradually over time, but a
learning curve analysis showed that the benefit was already present after students’ first
opportunity to experience the feedback manipulation. In addition, improvement in
evaluative skills would be consistent with a pattern of post-test results whereby the
groups are equal on an immediate post-test, but separate on measures of robust learning,
like long-term retention and transfer. In fact, the treatment was better on all measures,
both immediate and robust learning measures.

4 As described above, even excellent college students at Carnegie Mellon University benefited in time
savings from the immediate feedback of the LISP tutor.
5 In fact, immediate feedback tutors do allow students to learn from their errors – after all students are
required to correct their errors and can and often do so without further assistance. However, they are not
given the opportunity to learn from the downstream consequences of their errors.

An alternative interpretation is that through seeing the consequences of their errors,
which are particularly apparent in Excel, students were able to explicitly reason about
how their initial attempts led to errors and how they could be modified to achieve the
desired outcome. This interpretation appears consistent with Siegler’s (2002) results that
having students do self-explanations not only of correct solutions, but also incorrect
solutions improves their learning. He argues that learners must not only acquire and
strengthen correct knowledge components, but also weaken and eliminate incorrect
knowledge. In effect, the intelligent novice condition helped students rationalize, like the
derivations in VanLehn et al.’s (1992) self-explanation model, why their misconceptions
do not work. It also helped them rationalize why critical relevant features must be
included in correct knowledge components. Nathan (1998) also demonstrated benefits of
providing feedback that helps students see meaningful downstream consequences of their
errors and Ohlsson (1996) provided a detailed theory and computational model of
learning from errors.

Cognitive Tutors for improving help-seeking skills and reducing ‘gaming’

Besides meta-cognitive support for self-explanation and error self-correction, we have
explored providing meta-cognitive support for improving student help-seeking skills and
reducing unproductive learning behaviors. This work was inspired by data mining of
logged student-tutor interactions in which we noticed a high frequency of what appeared
to be non-ideal student behaviors that were correlated with poor learning (Aleven &
Koedinger, 2000a). As mentioned above, despite the feelings of many advocates for
greater student control in interactive systems, when given that control students do not
always use interactive features as intended. On the one hand, students sometimes attempt
to circumvent information withholding (i.e., avoid thinking) by engaging in fast and
repeated guessing or asking for hints more often or faster than appropriate – Baker coined
the phrase “gaming the system” to describe such behaviors (Baker, Corbett, Koedinger,
& Wagner, 2004). On the other hand, students sometimes avoid information giving by
not seeking help when it is likely needed.

Early efforts to create Cognitive Tutors to improve help seeking and reduce gaming have
resulted in some limited success. We developed a help-seeking tutor and integrated it into
the Geometry Cognitive Tutor. This adjunct tutor provides feedback on students’ help-
seeking behavior, as they use the tutor to solve geometry problems. For example, the
help-seeking tutor provides feedback when students engage in the maladaptive help-
seeking behaviors described above. An initial study showed reductions in some poor
help-seeking behaviors during instruction, but no consequent improvements in geometry
learning (Roll, Aleven, McLaren, Ryu, Baker, & Koedinger, 2006). In a different effort,
a Data Analysis Cognitive Tutor was enhanced with a machine-learning-based gaming
detector. When the enhanced tutor detected gaming behavior, it responded by emotional
displays of an animated agent and by presenting supplementary exercises on related
material. Students with the gaming tutor showed reduced overall gaming behavior and
the number of supplementary exercises received was associated with better learning.
However, the difference in domain learning was not statistically reliable across the whole

sample, perhaps because harmful gaming was present in a relatively small subset (about
10%) of the students.

It is still an open question as to why students engage in gaming behavior. It may be in
part a rational effort by less knowledgeable students to compensate for what may be,
from their perspective, premature information withholding. Some “gamers” may be
hurrying to get an example of a correct step in order to have something to study because
they are, as of yet, incapable of correctly generating the step themselves. For instance,
Crowley and Medvedeva (2006) found that a subset of medical students using an
intelligent tutor engage in gaming-like behavior during early problems in the curriculum
and evidence greater independent success on later problems. These arguably established
good learners may essentially be using the tutor’s bottom-out hints to create worked-
examples for themselves and may be choosing to engage in self-explanation rather than
be explained to.

Conclusion
Instructional interaction should optimize student involvement, not maximize or minimize
it. The potential benefits of withholding information or assistance are many, including
allowing students to learn by doing, to construct knowledge, to benefit from generation
effects, to reduce zoning out, to engage recall from long-term memory, and to provide
knowledge checks that prevent them from thinking they know when they do not. The
costs are also numerous. Students may get stuck, make mistakes and strengthen error
pathways, find it too hard and cognitively disengage. We have provided a number of
examples of how experiments within Cognitive Tutors have explored trade-offs between
giving and withholding instructional assistance.

Cognitive Tutors initially withhold information about problem solutions and solution
steps, and then interactively add information, only as needed, through yes/no feedback,
explanatory hints, and dynamic problem selection. The reviewed studies provide support
for this particular approach to balancing the giving and withholding of information and
for its individual interactive elements. This result should not be construed as supporting
information giving in general, or greater interactivity in general. We also do not mean to
claim that Cognitive Tutors currently strike an ideal balance – additional studies show
that faded examples (a subtle form of information giving) and feedback based on an
intelligent novice model (a subtle form of information withholding) sometimes are
improvements. It is likely that additional interactive elements will be found to be more
effective than existing approaches.

Given that a key downside of information withholding is errors and floundering (if not
complete failure), a rough criterion for deciding to give rather than withhold is when the
task gets too difficult and thus the probability of error or unproductive thinking is high.
What is the probability of error that is the ideal threshold point? That is a great question
for future research. In related work, Pavlik (in press) proposed an ideal error rate of
about 5 to 25% to decide on the length of delay between practice trials (long delay
between practice trials is a kind of information withholding). This estimate was based on

ACT-R simulations and is supported in experiments comparing practice-scheduling
algorithms where the derived expanded spacing schedule led to greater learning than
alternatives based on prior theory and standard practice. To what extent and in what ways
such an error rate threshold might generalize to more complex learning objectives than
the fact associations explored by Pavlik is wide open.

The crux of the assistance dilemma is prescribing decision criteria (e.g., conditions and
cut-off parameters) for when it is best to switch between information giving (more
assistance) and information withholding (less assistance). This dilemma may be the
fundamental open problem in learning and instructional science. Given the many
different ways to provide information or assistance, there is not going to be one solution
to the assistance dilemma. However, we believe it is critical to not only acknowledge the
dilemma, as others have (e.g., Vygotsky, 1978), but to strive toward characterizing
qualitative conditions and quantitative threshold parameters that can aid instructional
designers and instructors in making good decisions.

Further experimental studies and theoretical unification will be necessary to achieve this
ambitious goal. The Pittsburgh Science of Learning Center (http://learnlab.org) is
committed to supporting such an effort through both joint theory development and
through providing an infrastructure, called LearnLab, to aid researchers in running tightly
controlled experiments in real classroom settings and in doing microgenetic analyses of
detailed logs of student interactions in these classrooms.

References
Aleven, V., & Koedinger, K.R. (2000a). Limitations of student control: Do students

know when they need help? In G. Gauthier, C. Frasson, & K. VanLehn (Eds.),
Proceedings of the 5th International Conference on Intelligent Tutoring Systems, ITS
2000, (pp. 292-303). Berlin: Springer Verlag.

Aleven, V., & Koedinger, K. R. (2000b). The need for tutorial dialog to support self-
explanation. In C. P. Rose & R. Freedman (Eds.), Building Dialogue Systems for
Tutorial Applications, Papers of the 2000 AAAI Fall Symposium (pp. 65-73).
Technical Report FS-00-01. Menlo Park, CA: AAAI Press.

Aleven, V., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by
doing and explaining with a computer-based Cognitive Tutor. Cognitive Science,
26(2).

Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2006). Toward meta-cognitive
tutoring: A model of help seeking with a Cognitive Tutor. International Journal of
Artificial Intelligence and Education, 16, 101-128.

Aleven, V., Stahl, E., Schworm, S., Fischer, F., & Wallace, R.M. (2003). Help seeking
and help design in interactive learning environments. Review of Educational
Research, 73(2), 277-320.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, N.J.: Erlbaum.
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive

tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167-207.

Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated learning and education.
Educational Researcher, 25(4), 5-11.

Anderson, J. R., Reder, L. M. & Simon, H. A. (1998). Radical constructivism and
cognitive psychology. In D. Ravitch (Ed.) Brookings papers on education policy
1998. Washington, DC: Brookings Institute Press.

Atkinson, R. K., Derry, S. J.; Renkl, A., & Wortham, D. (2000). Learning from
examples: Instructional principles from the worked examples research. Review of
Educational Research, 70(2) 181–214.

Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying
examples to solving problems: Effects of self-explanation prompts and fading
worked-out steps. Journal of Educational Psychology, 95(4), 774-783.

Baker, R. S., Corbett, A.T., Koedinger, K.R., & Wagner, A.Z. (2004). Off-task behavior
in the Cognitive Tutor classroom: When students “game the system.” Proceedings of
ACM CHI 2004: Computer-Human Interaction (pp. 383-390).

Baker, R., Corbett, A., Koedinger, K. R., Evenson, S., Roll, I., Wagner, A., Naim, M.,
Raspat, J., Baker, D., & Beck, J. (2006). Adapting to when students game an
intelligent tutoring system. In M. Ikeda, K. D. Ashley, & T.-W. Chan (Eds.),
Proceedings of the 8th International Conference on Intelligent Tutoring Systems (pp.
392-401). Berlin: Springer-Verlag.

Bloom, B.S. (1984). The 2-sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational Researcher, 13, 4-16.

Clark, R. C., & Mayer, R. E. (2003). e-Learning and the Science of Instruction : Proven
Guidelines for Consumers and Designers of Multimedia Learning. San Francisco:
Jossey-Bass.

Corbett, A. (2001). Cognitive computer tutors: solving the two-sigma problem. In M.
Bauer, P. J. Gmytrasiewicz, & J. Vassileva (Eds.), Proceedings of the 2001
International Conference on User Modeling (pp. 137-147). Berlin: Springer Verlag.

Corbett, A., & Anderson, J. R. (1995). Knowledge tracing: modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction, 4, 253-278.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-
explanations: How students study and use examples in learning to solve problems.
Cognitive Science, 13(2), 145-182.

Chi, M. T. H., de Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-
explanations improves understanding. Cognitive Science, 18(3), 439-477.

Crowley R. S., & Medvedeva, O. (2006). An intelligent tutoring system for visual
classification problem solving. Artificial Intelligence in Medicine, 36(1), 85-117.

Crowley, R. S, Legowski E., Medvedeva O., & Tseytlin E. (2005). An ITS for medical
classification problem-solving: Effects of tutoring and representations. In C. K. Looi,
G. McCalla, B. Bredeweg, & J. Breuker (Eds.), Proceedings of the 12th International
Conference on Artificial Intelligence (AIED 2005), Amsterdam, The Netherlands.

Duch, B., Gron, S., & Allen, D. (2001). The Power of Problem-Based Learning; A
Practical "How To" For Teaching Undergraduate Courses in Any Discipline. Stylus
Publishing, LLC.

Eberts, R. E. (1997). Computer-based instruction. In M. G. Helander, T. K. Landauer,
& P. V. Prabhu (Eds), Handbook of Human-Computer Interaction (pp. 825-847).
Amsterdam, The Netherlands: Elsevier Science B. V.

Guskey, T. R. (1987). The essential elements of mastery learning. Journal of Classroom
Interaction, 22(2), 19-22

Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is
superior to studying worked examples. Journal of Educational Psychology, 93(3),
579–588.

Karjcik, J. & Starr, M. (2001). Learning science content in a project-based environment.
In Tinker, R., & Krajcik, J. S. (Eds). Portable Technologies: Science Learning in
Context. Netherlands: Kluwer Publishers.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational Psychologist,
41(2), 75–86.

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback intervention on
performance: A historical review, a meta-analysis and a preliminary feedback
intervention theory. Psychological Bulletin, 112(2), 254-284.

Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples
from Cognitive Tutor Math 6. In D. S. Mewborn, P. Sztajn, D. Y. White, H. G.
Wiegel, R. L. Bryant, & K. Nooney (Eds.), Proceedings of twenty-fourth annual
meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education, Vol. 1, pp. 21-49. Columbus, OH: ERIC
Clearinghouse for Science, Mathematics, and Environmental Education.

Koedinger, K.R., & Anderson, J.R. (1993). Reifying implicit planning in geometry:
Guidelines for model-based intelligent tutoring system design. In Lajoie, S., &
Derry, S. (Eds.) Computers as Cognitive Tools. Hillsdale, NJ: Erlbaum.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence
in Education, 8, 30-43.

Koedinger, K. R. & Corbett, A. T. (2006). Cognitive Tutors: Technology bringing
learning science to the classroom. In K. Sawyer (Ed.), The Cambridge Handbook of
the Learning Sciences. Cambridge University Press.

Lepper, M. R., & Malone, T. W. (1987). Intrinsic motivation and instructional
effectiveness in computer-based education. In R. E. Snow & M. J. Farr (Eds.),
Aptitude, learning and instruction: Volume III Conative and affective process
analyses. Hillsdale, NJ: Erlbaum.

Lewis, M. W. (1989). Developing and evaluating the CMU Algebra Tutor: Tension
between theoretically-driven and pragmatically-driven design. Paper presented at the
annual meeting of the American Educational Research Association, San Francisco,
CA.

Mathan, S. A. (2003). Recasting the Feedback Debate: Benefits of Tutoring Error
Detection and Correction Skills. Unpublished dissertation. Carnegie Mellon
University.

Mathan, S. A. & Koedinger, K. R. (2005) Fostering the Intelligent Novice: Learning from
errors with metacognitive tutoring. Educational Psychologist. 40(4), 257-265.

McLaren, B. M., Lim, S., Gagnon, F., Yaron, D., & Koedinger, K. R. (2006). Studying
the effects of personalized language and worked examples in the context of a web-
based intelligent tutor. In M. Ikeda, K. D. Ashley, & T.-W. Chan (Eds.), Proceedings
of the 8th International Conference on Intelligent Tutoring Systems (pp. 318-328).
Berlin: Springer-Verlag.

McKendree, J. E. (1990). Effective feedback content for tutoring complex skills. Human
Computer Interaction, 5, 381-414.

Merrill, D. C., Reiser, B. J., Ranney, M., & Trafton, J. G. 1992. Effective tutoring
techniques: Comparison of human tutors and intelligent tutoring systems. Journal of
the Learning Sciences 2(3), 277-305.

Morgan, P., & Ritter, S. (2002). An experimental study of the effects of Cognitive
Tutor® Algebra I on student knowledge and attitude. (Available from Carnegie
Learning, Inc., 1200 Penn Avenue, Suite 150, Pittsburgh, PA 15222).
http://www.carnegielearning.com

Nathan, M. J. (1998). Knowledge and situational feedback in a learning environment for
algebra story problem solving. Interactive Learning Environments, 5, 135-159.

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103(2),
241-262.

Ohlsson, S. & Mitrovic, A. (2006). Constraint-based knowledge representation for
individualized instruction. Computer Science and Information Systems, 3(1), 1-22.

Paas, F., & Van Merrienboer, J. (1994). Variability of worked examples and transfer of
geometry problem-solving skills: A cognitive-load approach. Journal of Educational
Psychology, 86, 122-133.

Pavlik Jr., P. I. (in press). Timing is an order: Modeling order effects in the learning of
information. In F. E. Ritter, J. Nerb, T. O'Shea & E. Lehtinen (Eds.), In order to
learn: How the sequences of topics affect learning. New York, NY: Oxford
University Press.

Plano, G. S. (2004). The Effects of the Cognitive Tutor Algebra on student attitudes and
achievement in a 9th grade Algebra course. Unpublished doctoral dissertation, Seton
Hall University.

Roll, I., Aleven, V., McLaren, B. M., Ryu, E., Baker, R., & Koedinger, K. R. (2006).
The help tutor: Does metacognitive feedback improve students’ help-seeking actions,
skills and learning? In M. Ikeda, K. D. Ashley, & T.-W. Chan (Eds.), Proceedings of
the 8th International Conference on Intelligent Tutoring Systems (pp. 360-369).
Berlin: Springer-Verlag.

Renkl, A., Atkinson, R. K., & Große, C. S. (2004) How fading worked solution steps
works - a cognitive load perspective. Instructional Science, 32, 59-82.

Renkl, A. (2002). Learning from worked-out examples: Instructional explanations
supplement self-explanations. Learning & Instruction, 12, 529-556.

Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out
examples: the effects of example variability and elicited self-explanations.
Contemporary Educational Psychology, 23, 90-108.

Sarkis, H. (2004). Cognitive Tutor Algebra 1 program evaluation, Miami-Dade County
Public Schools. The Reliability Group. (Available from Carnegie Learning, Inc., 1200
Penn Avenue, Suite 150, Pittsburgh, PA 15222)

Schmidt, R.A. & Bjork, R.A. (1992). New conceptualizations of practice: common
principles in three paradigms suggest new concepts for training. Psychological
Science, 3 (4), 207-217

Schoenfeld, A. (1983). Beyond the purely cognitive: Belief systems, social cognitions,
and metacognitions as driving forces in intellectual performance. Cognitive Science,
7, 329-363.

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction,
16(4), 475- 522.

Schwonke, R., Wittwer, J., Aleven, V., Salden, R., Krieg, C., & Renkl, A. (in press). Can
tutored problem solving benefit from faded worked-out examples? In The Second
European Cognitive Science Conference.

Schworm, S. & Renkl, A. (2002). Learning by solved example problems: Instructional
explanations reduce self-explanation activity. In W. D. Gray & C. D. Schunn (Eds.),
Proceeding of the 24th Annual Conference of the Cognitive Science Society (pp.816-
821). Mahwah, NJ: Erlbaum.

Shneyderman , A. (2001). Evaluation of the Cognitive Tutor Algebra I program. Miami-
Dade County Public Schools, Office Of Evaluation And Research.
http://oer.dadeschools.net/algebra.pdf#search=%22Shneyderman%20miami%20cogni
tive%20tutor%22.

Siegler, R. S. (2002). Microgenetic studies of self-explanation. In N. Garnott & J.
Parziale (Eds.), Microdevelopment: A process-oriented perspective for studying
development and learning (pp. 31-58). Cambridge, MA: Cambridge University Press.

Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon.
Journal of Experimental Psychology: Human Learning and Memory, 4, 592-604.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12(2), 257-285.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2, 59–89.

Trafton, J. G., & Reiser, B.J. (1993). The contributions of studying examples and solving
problems to skill acquisition. In M. Polson (Ed.), Proceedings of the Fifteenth annual
conference of the Cognitive Science Society (1017-1022). Hillsdale, N.J.: Erlbaum.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial
Intelligence in Education, 16, 227-265.

VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model of the self-explanation
effect. The Journal of the Learning Sciences, 2, 1-59.

Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and
Instruction, 7, 1-39.

White, B. Y. & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making
science accessible to all students. Cognition and Instruction 16(1), 3-118.

Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing.
Cognition and Instruction, 4(3), 137-166.

