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Abstract

We present our overall third ranking solution for the KDD Cup 2010 on educational data
mining. The goal of the competition was to predict a student’s ability to answer questions
correctly, based on historic results. In our approach we use an ensemble of collaborative
filtering techniques, as used in the field of recommender systems and adopt them to fit the
needs of the competition. The ensemble of predictions is finally blended, using a neural
network.
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1. Introduction

The goal of the KDD Cup 2010 on educational data mining is to predict the correctness
of a student’s first attempt to solve a problem. The cup organizers provide 2 previously
unpublished datasets, called Algebra 2008-2009 and Bridge to Algebra 2008-2009. These
two datasets contain the same data fields but vary in size.

This years KDD Cup has very interesting similarities to the field of recommender sys-
tems. In the world of recommender systems there are users and items, and interactions
between them, like ratings and purchases. So one ends up with a big user-item matrix
with lots of elements missing. The goal is to predict the missing values. In the KDD Cup
2010 there are students and steps. Not every student has tried to answer every step, so the
resulting matrix is also sparse. Thus the basic problem looks very similar, for this reason
we adopted methods from the field of recommender systems to fit the needs of this cup.

1.1 Data and Notation

The goal was to predict whether a student solves a step at the first attempt. Throughout
the text we denote the step with i and the student with s.

Both datasets provided have the same structure, but vary in size. The smaller Algebra

2008-2009 has nearly 9 million lines, while the bigger Bridge to Algebra 2008-2009 has
over 20 million. Exact numbers can be found in Table 1. The datasets are generated from
students answering questions from an electronic tutoring system. We denote the set of
students with S. Each student has to answer steps, the set of steps is denoted as I. In case
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Algebra 2008-2009 Bridge to Algebra 2008-2009

Lines (train) 8,918,054 20,012,498

Students (train) 3,310 6,043

Steps (train) 1,357,180 603,176

Problem (train) 211,529 63,200

Section (train) 165 186

Units (train) 42 50

KC (train) 2,097 1,699

Steps (new on test) 4,390 9,807

Table 1: The table above contains general dataset statistics. In the last line we see, that
both datasets contain steps in the test set, which are not present in the train set.
These cases are a challenge for collaborative filtering.

a student s ∈ S answers the step i ∈ I correctly in the first attempt cis is 1 otherwise 0.
Not every student answers every step, so the matrix C = [cis] is sparse. The set of students
who answered step i is called Si, hence the set of steps answered by student s is Is.

Steps are grouped into problems, so every step belongs to exactly one problem. The set
of all problems is denoted as P and p(i) is the problem of step i. Furthermore, problems
are grouped into sections, and sections into units. We denote the set of all sections as X

and the section of step i as x(i). The set of units is U and the unit of step i is u(i). Every
step has set of knowledge components (KCs), which describe the skills needed for solving
the step. Due to the fact that the set of KCs associated with a step changes over time, we
denote the set of KCs for a given student step pair as K(i, s).

For the competition the set L = {(i, s)|i ∈ I, s ∈ S, cis is known} consisting of known
elements of the matrix C is divided into a training set LT and a test set LP , so that
LT ∪ LP = L and L ∩ T = ∅. The error measure is the root mean square error (RMSE).

The test set RMSE is given by
√

1
|LT |

∑

(i,s)∈LT
(cis − ĉis)2, while ĉis is the predicted value

of student s having step i correct at the first time. The leaderboard scores are calculated
based on an unknown subset of the test set LT .

1.2 Framework

During the few weeks of the KDD cup we tried many methods and ways to model the data.
Every model was trained and evaluated using a 8-fold cross validation. Finally we used a
neural network to blend the collected ensemble of predictions from different models.

For the cross validation we divide the set LT into 8 equally sized disjoint sets LT1 to
LT8. So we train 8 models in parallel, the first trains on the set LT2 ∪ LT3 ∪ ... ∪ LT8 and
generates predictions for the set LT1 and the test set LP . The second trains on the set
LT1 ∪ LT3 ∪ LT4 ∪ ... ∪ LT8 and predicts for set LT2 and the test set LP . So every model
predicts one part of the train set and the test set LP , while being trained on the remaining
data. Hence we have 8 predictions for every cis in the test set. For the test set we use the
mean of the 8 probe predictions. For this reason our probe RMSE values are lower than
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the RMSE values calculated by cross validation. Throughout the paper all reported RMSE
values are the values stemming from cross validation.

2. Algorithms

As stated in the introductory section we adopted the ideas of collaborative filtering to fit the
needs of KDD Cup 2010. For every algorithm we describe the origin, and our modifications
and report all results used in our final submission.

2.1 K Nearest Neighbor (KNN)

One of the most näıve algorithms is to use the nearest neighbors for prediction. In the world
of recommender systems this algorithm is known as user based collaborative filtering. It was
originally published by Resnick et al. (1994). For the Netflix competition the authors used
a modified version with correlation shrinkage, which can be found in Töscher and Jahrer
(2008).

The idea of this algorithm is to search for the K students who have the most similar
results in history and use a weighted mean of their results for prediction. For calculating
similarities between users we use the Pearson correlation between students calculated on
the subset of commonly answered steps.

The steps answered by student s1 and s2 are given by Is1 and Is2 . Based on the common
subset of items Is1s2 = Is1 ∩ Is2 answered by both students the Pearson correlation between
them is given by

ρs1s2 =

1
|Is1s2 |−1

∑

i∈Is1s2
(cs1i − µs1)(cs2i − µs2)

√

1
|Is1s2 |−1

∑

i∈Is1s2
(cs1i − µs1)

2
√

1
|Is1s2 |−1

∑

i∈Is1s2
(cs2i − µs2)

2
, (1)

where

µs1 =
1

|Is1s2|

∑

i∈Is1s2

cs1i (2)

and

µs2 =
1

|Is1s2|

∑

i∈Is1s2

cs2i (3)

being the mean values. The cardinality |Is1s2| of the set of commonly answered steps varies
between different students. Therefore we shrink the correlation

ρ̄s1s2 =
|Is1s2 | · ρs1s2

|Is1s2 | + α
(4)

towards zero based on the relation between the number of samples used to calculate the
correlation and the meta parameter α. According to our experience the shrinkage is very
important because it accounts for the strongly varying number of samples used to calcu-
late the correlation. After the shrinkage we apply a nonlinear mapping using the sigmoid
function σ(x) = 1

1−e−x . This leads to

ρ̃s1s2 = σ (δ · ρ̄s1s2 + γ) , (5)
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Dataset RMSE Meta parameters

Algebra 2008-2009 0.3257 K = 41, α = 12.9, β = 1.5, δ = 6.2, γ = −1.9

Bridge to Algebra 2008-2009 0.3049 K = 41, α = 12.9, β = 1.5, δ = 6.2, γ = −1.9

Table 2: This table reports all results optained by the student based KNN described in
Section 2.1 and used for the final submission.

where the meta parameters δ and γ control the mapping. In order to give predictions for
student s on step i we use a weighted average of the K most similar students who answered
step i. This is given by

c̃is =

∑

s̃∈Si(s;K) ρ̃ss̃cis̃
∑

s̃∈Si(s;K) |ρ̃ss̃|
(6)

where Si(s;K) ⊂ Si is a set of K students with the highest correlation to student s. In some
cases there are few or no other students who answered the step i or they have only weak
correlations to student s. For this reason we correct the predicted c̃is towards the student
mean µs

ĉis =
c̃is

∑

s̃∈Si(s;K) |ρ̃ss̃| + µsβ
∑

s̃∈Si(s;K) |ρ̃ss̃| + β
(7)

based on the relation between the sum of correlations and the meta parameter β. If the
sum of correlations is big compared to β, the prediction c̃is is influenced marginally, but if
the sum of correlations is low, the prediction is strongly corrected towards the user mean.
In the extreme case the prediction is the user mean. This is very important for steps which
have not been answered by other students.

In Table 2 we report results of this algorithm for both datasets.

2.2 Singular Value Decomposition (SVD)

The singular value decomposition is well known in linear algebra and states that an arbitrary
matrix C with real or complex entries can be decomposed into a product of three matrices
AΣBT with Σ being a diagonal matrix. In the collaborative filtering context the matrix
C is sparse, meaning that most of the elements are unknown. The basic idea of SVD to
decompose the matrix C can be still applied. During the Netflix competition, this method
became very popular because of two reasons. First it delivers good results out of the box and
second it is easy to tune and customize. Over the last years there were lots of publications
describing extensions to the basic SVD. We first show how to use the basic SVD and then
how to extend it.

The idea is to represent a step i by a feature vector ai and a student s by a feature
vector bs. This means the steps are represented by a |I| × N matrix A, where N is the
number of features used to represent a step. The students are represented by a |S| × N

matrix B. The final goal is that the product of the matrices ABT approximates the known
elements of C. This leads to minA,B‖C − ABT ‖2

C , where the norm ‖ · ‖2
C =

∑

(i,s)∈LT
c2
is

is only defined on the known elements of C. In order to account for the different number
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Dataset RMSE Meta parameters

Algebra 2008-2009 0.446277 N = 10, η = 0.002, λ = 0.02

Bridge to Algebra 2008-2009 0.3168 N = 10, η = 0.002, λ = 0.02

Bridge to Algebra 2008-2009 0.3159 N = 20, η = 0.002, λ = 0.01

Bridge to Algebra 2008-2009 0.3178 N = 20, η = 0.002, λ = 0.03

Table 3: This table reports all results obtained by the SVD in Section 2.2. The parameter
N is the feature size, η is the learn rate and λ the L2 regularization. The results
on the Bridge to Algebra dataset look promising, while the results on the Algebra

dataset do not. The reason for the bad results on the first dataset is the large
number of steps with few answers, which leads to few updates of the corresponding
feature vectors. The introduction of biases in the improved version in Section 2.3
corrects this problem.

of known elements for students and steps, regularizing the matrix decomposition is very
important. This leads to the following error function to be minimized:

E(A,B) = ‖C − ABT ‖2
C + λ(‖A‖2

F + ‖B‖2
F ) (8)

In the equation above ‖·‖2
F denotes the squared Frobenius norm and λ is the meta parameter

for controlling the L2 regularization. A rating prediction is then given by

ĉis = aT
i · bs (9)

a dot product of the corresponding student and step feature vectors. Using the above
prediction leads to the following error function:

E =
∑

(i,s)∈LT

(cis − ĉis)
2 + λ(‖A‖2

F + ‖B‖2
F ) (10)

In order to train this model we initialize all parameters from a uniform distribution
[−0.001, 0.001] and train the model using stochastic gradient descent. In Table 3 we report
results on both datasets.

2.3 Factor Model 1 (FM1)

The FM1 enhances the idea of the SVD model, and corrects some shortcomings of pure
SVD, as described in Section 2.2. The extensions are inspired by the work of Koren (2010)
and Paterek (2007). We saw that failing to use biases generates large errors for unknown
students or steps. Hence this model uses lots of biases. We have the global bias µ, a
step dependent bias µ̂i and a student dependent bias µ̄s. Additionally, we include a unit
dependent bias µ̆u(i), a section bias µ́x(i) and a problem bias µ̃p(i). We found that the
knowledge component (KC) includes valuable information, unfortunately the number of
KCs is different for every step and also changes over time. So we denote student and step
dependent set of KCs as K(i, s), and introduce a KC dependent bias µ̌k and a student and
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Dataset RMSE Meta parameters

Algebra 2008-2009 0.3078 N = 50, η = 0.0005, λ = 0.01

Bridge to Algebra 2008-2009 0.3013 N = 50, η = 0.0005, λ = 0.01

Table 4: This table reports all results obtained by FM1 in Section 2.3. The parameter N

is the feature size, η is the learning rate and λ the L2 regularization.

KC dependent bias µ̇ks. We also use KC dependent N dimensional feature vectors ák, which
are added to the step feature vector ai. The introduced biases and feature vectors enhance
the basic SVD prediction from Equation 9 to

ĉis = µ + µ̂i + µ̄s + µ̃p(i) + µ́x(i) + µ̆u(i) +
1

√

|K(i, s)|

∑

k∈K(i,s)

(µ̌k + µ̇ks) (11)

+



ai +
1

√

|K(i, s)|

∑

k∈K(i,s)

ák





T

· bs (12)

the prediction equation for the FM1 model.
Like in the SVD case we use stochastic gradient descent with L2 regularization to train all

parameters. The obtained results using this model are shown in Table 4. The introduction
of the biases and the KC dependent feature vector significantly lowered the RMSE on both
datasets.

2.4 Factor Model 2 (FM2)

The FM2 is very similar to the FM1. We remove the student and KC dependent bias
µ̇ks and introduced a student and unit dependent bias µ̈su(i). This leads to the following
prediction equation:

ĉis = µ + µ̂i + µ̄s + µ̃p(i) + µ̆u(i) + µ̈su(i) +
1

√

|K(i, s)|

∑

k∈K(i,s)

µ̌k (13)

+



ai +
1

√

|K(i, s)|

∑

k∈K(i,s)

ák





T

· bs (14)

We train the model using stochastic gradient descent with L2 regularization. The ob-
tained results are shown in Table 5.

2.5 Factor Model 3 (FM3)

This algorithm extends the idea of the first two factor models by modeling even more
relationships in the data. A global bias term is represented by

µ̆is = µ + µ̂i + µ̄s + µ̃p(i) + µ́x(i) + µ̆u(i) +
1

√

|K(i, s)|

∑

k∈K(i,s)

µ̌k, (15)
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Dataset RMSE Meta parameters

Algebra 2008-2009 0.3044 N = 150, η = 0.002, λ = 0.005

Algebra 2008-2009 0.3045 N = 150, η = 0.003, λ = 0.003

Bridge to Algebra 2008-2009 0.2997 N = 100, η = 0.003, λ = 0.005

Table 5: The reported results stem from the FM2. The higher feature size N and the higher
regularization λ combined with the small modeling changes, significantly improved
the RMSE compared to the FM1 model.

Dataset RMSE Meta parameters

Algebra 2008-2009 0.2996 N = 5

Bridge to Algebra 2008-2009 0.2916 N = 20

Bridge to Algebra 2008-2009 0.2924 N = 5

Table 6: This table contains our best results obtained with FM3.

where µ is the global, µ̂i the step and µ̄s the student bias. A problem bias is modeled
by µ̃p(i), a section bias by µ́x(i) and a unit bias is represented as µ̆u(i). As in FM2 we
model a knowledge component specific bias µ̌k, but we removed the user specific knowledge
component bias.

This model extends the N dimensional step feature vector ai for step i, by adding a unit
dependent feature vector âu(i), a section feature vector āx(i) and a problem feature vector
ãp(i). We further introduce knowledge component dependent feature vectors ák, which leads
to:

ăis = ai + âu(i) + āx(i) + ãp(i) +
1

√

|K(i, s)|

∑

k∈K(i,s)

ák (16)

The students are modeled as

b̆is = bs + b̂u(i) + b̄x(i) + b̃p(i) +
1

√

|K(i, s)|

∑

k∈K(i,s)

b́k, (17)

where bs ∈ R
N is a N dimensional student feature vector. Similar to the step side we use

feature vectors per unit b̂u(i), per section b̄x(i) and per problem b̃p(i). We use knowledge

component dependent features b́k.

A prediction is given by:

ĉis = µ̆is + ăT
is · b̆is (18)

In order to train this model we use stochastic gradient descent to minimize a quadratic
error function. In contrast to the former models we do not use the same learning rate and
L2 regularization for every parameter. We use different learning rates and regularizations
for every bias and feature vector. Our best results obtained are reported in Table 6.

7
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2.6 Group Factor Model (GFM)

One of our biggest concerns during the few weeks of the competition was to miss an im-
portant signal in the data. This was the main driving force behind this model. We try to
include every information available and model all possible interactions.

First of all we have to introduce additional notation. So far we have used the fact that
a step belongs to one problem, one section and one unit. In FM1 to FM3 we already use
the knowledge components. For this model we use the knowledge component in a different
way, we do not parse the provided string into the individual knowledge components. We
directly map the string to an ID. So every KC string which occurs more than 5 times gets
its own ID, all the others share a default ID. Furthermore, we use the opportunity count
which was provided for each KC. We directly use the string for grouping. Similar to the
KC string, we only use opportunity count group strings which occur more than 5 times,
all the others share a default group. An additional grouping is given by the name of the
steps. Some steps have the same name but belong to different problems, so we introduce a
grouping based on the plain step name. The grouping we use is based on the problem view,
we have one group for the problem view being 1 and one group for the rest. Hence we end
up having 7 different groupings.

A prediction ĉis for student s on step i is given by:

ĉis = µ +
7

∑

g=1

bT
s · dg,G(g)(i,s) +

7
∑

g=1

āT
i · d̄g,G(g)(i,s) (19)

+

7
∑

g=1

b̃T
sg · d̃g,G(g)(i,s) +

7
∑

g=1

âT
ig · d̂g,G(g)(i,s) (20)

+

7
∑

g=1

7
∑

ĝ=1

d̆T
g,G(g)(i,s)

· d́ĝ,G(ĝ)(i,s) (21)

+

7
∑

g=1

7
∑

ĝ=g+1

ďT
g,G(g)(i,s)

· ďĝ,G(ĝ)(i,s) (22)

Every student s and step i pair belongs to exactly 7 groups, while the group ID for group
g is given by G(g)(i, s). All feature vectors are N dimensional.

We train the model using stochastic gradient descent. In Table 7 we report our best
results using this model.

2.7 Restricted Boltzmann Machines (RBM)

RBMs, as described in Salakhutdinov et al. (2007), got very popular for collaborative fil-
tering during the Netflix competition. They were especially known to achieve great results
in a big ensemble with SVD and factor models. We tried to use RBMs on the KDD Cup
dataset and the results looked very promising, unfortunately we were not able to finalize
this model before the deadline.
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Dataset RMSE Meta parameters

Algebra 2008-2009 0.2997 N = 20, η = 0.003, η− = 0.0001, λ = 0.001

Algebra 2008-2009 0.3051 N = 20, η = 0.002, η− = 0.0001, λ = 0.0

Bridge to Algebra 2008-2009 0.2908 N = 20, η = 0.005, η− = 0.0002, λ = 0.0016

Bridge to Algebra 2008-2009 0.2901 N = 50, η = 0.005, η− = 0.0002, λ = 0.0016

Bridge to Algebra 2008-2009 0.2898 N = 60, η = 0.005, η− = 0.0002, λ = 0.0016

Table 7: This table shows results of the GFM. The used feature size is called N . We used
stochastic gradient descent with L2 regularization. The learning rate is denoted
with η and the regularization with λ. In order to slightly improve the results we
decreased the learning rate by a fixed amount η− after every epoch.

3. Blending

The individual predictions stemming from the methods described in Section 2 are combined
using a blender. This is a typical approach to improve the prediction accuracy, which was
shown in Jahrer et al. (2010). It is widely known that an ensemble of predictions performs
better than the best individual result. The training set for the blender consists of the
predictions we get from the cross validation process from each individual collaborative
filtering algorithm. As an effect of the ongoing competition we blended more individual
results as listed in the previous sections. They stem from parameter tweaks. For the
first dataset (Algebra 2008-2009) we use 36 predictors, for the second dataset (Bridge to
Algebra 2008-2009) 37 predictors are used. After a few experiments with different learners
and different parameters it turned out that a neural network with two hidden layer works
best. The net layout for the first dataset is 142-80-80-1 and for the second dataset 130-
80-80-1. Both blending networks are trained for 90 epochs, the learning rate η = 0.001
is subtracted by 10−5 every epoch. No weight decay is used. The blending software is
taken from the ELF-project [Jahrer (2010)]. The features in the training set, which are
now predictions from CF algorithms, are enlarged by additional information. Figure 1 is
a visualization of one feature vector of the blending training set from the dataset Algebra
2008-2009. We add knowledge component encoding, problem view encoding, hierarchy
encoding, unit encoding, opportunity statistics and the student/step support. Encoding is
a binary information source, where exactly one input has value 1.0.

Since both datasets are huge in the number of samples (9 million for Algebra 2008-2009,
20 million for Bridge to Algebra 2008-2009 ) the blender needs a remarkable amount of time
for training. The blending is done on all samples of the training set. We make experiments
with subsampling and surprisingly the RMSE of the submission improves (ca. 0.0020) when
we take the last 40% of ratings per student and unit. These reflects the distribution of the
test set better. The RMSE values of the blending (cross-validation) and the submission are
listed in Table 8.
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Dataset: Algebra 2008-2009 Dataset: Bridge to Algebra 2008-2009

blend 0.280925: on cross-validation 0.288417: on cross-validation

blend 0.277355: submission 0.28073: submission

Table 8: RMSE values from the blend of both datasets.

Figure 1: Numerical values of one feature vector of the training set for blending. This
example is taken from the Algebra 2008-2009 dataset.
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4. Conclusion

We have shown how to use ideas from collaborative filtering for educational datamining. We
adopted KNN and matrix factorization to be applicable to the provided datasets. Finally,
we blended an ensemble of predictions using a neural network. The resulting solution ranked
third in the KDD Cup 2010.
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