JMLR: Workshop and Conference Proceedings 11: KDD CUP 2010

Hierarchical Aggregation Prediction Method

Rafael Perez Mendoza PEREZMRAF@AI.IS.UEC.AC.JP
Neil Rubens RUBENS@AI.IS.UEC.AC.JP
Toshio Okamoto OKAMOTO@AI.IS.UEC.AC.JP

Graduate School of Information Systems
University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi

Tokyo, Japan

Editor: Somebody I. Someone

Abstract

In this paper we explain the methodology taken to tackle the problem of predicting the students’

performance as stated in the KDD Cup 2010 Educational Data Mining Challenge. To address
this task, we designed a methodology of our own, which we call hierarchical aggregation predic-
tion method. The main objective of the proposed method is to achieve a good computational
efficiency, without significant loss in accuracy. This is achieved by, reducing the amount of data
that is processed through the hierarchical aggregation of data, and application of feature selection
methods. We further improve the computational speed of the proposed method by using the rela-
tional database for aggregation procedures. We highlight the advantages of the proposed method
(much faster execution speed, while maintaining comparable accuracy) by comparing it with the
k-nearest neighbors (k-NN) classification algorithm (which also performs aggregation, but in a
different manner).

1. Introduction

Data mining has become an important field of research in computer science today. In today’s world
we have an assortment of algorithms and methodologies at our disposal for machine learning and
prediction tasks. As this quantity keeps growing and expanding, it is not only a matter of generating
new models for all the new problems we find, but also finding the most suitable model for whatever
situation we may have at hand. Keeping this in mind we went into the task of finding a methodology
that could return the most accurate predictions for the KDD Cup 2010 Educational Data Challenge.

The task in the KDD Cup 2010 Educational Data Mining Challenge (PSLCDataShop, 2010a)
was to predict the probability of students solving a specific step of a problem on the first attempt,
this is explained in detail in Section 2. There was a total of five data sets, three of them development
sets and two challenge sets. The challenge data sets were significantly larger than the development
sets.

Initially, we tried several iterations of k-nearest neighbors (k-NN) classification algorithm with
different combinations of parameters and features on the original development sets, this is explained
in detail in Section 3. From this experiment, we obtained interesting observations such as how
nominal data can be more important as a feature than numerical data, and how a bigger quantity
of neighbors k is not always related to better results, but it always means an increase in the com-
putational needs. Even though k-NN performed satisfactory with the smallest of the development
sets, we realized k-NN would take too much time to complete using the challenge sets. Considering
k-NN is one of simplest and fastest algorithms there is, we realized that trying with the other more

© R. Perez, N. Rubens, T. Okamoto.

PEREZ, RUBENS, OKAMOTO

Data sets Students Steps
Development | Algebra I 2005-2006 575 813,661
Algebra I 2006-2007 1,840 | 2,289,726
Bridge to Algebra 2006-2007 1,146 | 3,656,871
Challenge Algebra I 2008-2009 3,310 | 9,426,966
Bridge to Algebra 2008-2009 6,043 | 20,768, 884

Table 1: KDD Cup 2010 Data Sets (PSLCDataShop, 2010b)

complex algorithms could lead to incrementing the necessary computing time. At this point, we
decided to change and develop our own methodology

We developed a methodology that we call hierarchical aggregation prediction method. This
method, detailed in Section 4, selects some features by means of forward selection, aggregates them
per feature, and then stores each of them into a different table in a data base. Using these tables as
our initial data, we combine them and average them again using the features we already know, this
is, each new combined table has all the previous features as well as an unified partial prediction.
We repeat this process until we create a table made of all the possible features. Finally we roll back
from the table with the most features to the original single-feature tables looking for the predictions
as needed, and averaging them as necessary. If a prediction is found, all the subsequent search is
skipped to continue looking for the next set of features. We decided to use relational data bases
for its highly tuned performance and ease of implementation, as aggregation functions are already
implemented in Structured Query Language (SQL), and the computation performance of aggregating
functions is highly optimized by the database engine itself (MySQL in our case).

Both k-NN and hierarchical aggregation are compared and discussed in Section 5. Also, in their
respective sections (Section 3.3 for k-NN and 4.2 for hierarchical aggregation) we explain how they
were implemented and provide more details about the hardware and software. Finally we discuss
the lessons that we have learned, and possibilities for further improvements. (Section 6).

2. Problem Description

The KDD Cup 2010 Educational Data Mining Challenge (PSLCDataShop, 2010a) was to predict,
from student data provided by 2 different algebra tutoring systems, the probability of the students
to solve an specific step of a problem in the first attempt. There was a total of five data sets, three
of them for development and two of them for the real challenge (Table 1). Each data set contained
a different quantity of steps that can be considered as data points.

Overall, 18 features were made available for prediction, 6 of them categorical, 7 of them sequential,
4 of them timestamps, and the final one, the label, binomial (PSLCDataShop, 2010b). Out of
these features 11 were in the training sets but completely missing in the testing sets. The original
description of data is as follows(PSLCDataShop, 2010b):

"The competition will use 5 data sets (3 development data sets and 2 challenge data sets)
from 2 different tutoring systems. These data sets come from multiple schools over multiple
school years. The systems include the the Carnegie Learning Algebra system, deployed
2005-2006 and 2006-2007, and the Bridge to Algebra system, deployed 2006-2007. The
development data sets have previously been used in research and are available through the
Pittsburgh Science of Learning Center DataShop (as well as this website). The challenge
data sets will come from the same 2 tutoring systems for subsequent school years; the
challenge data sets have not been made available to researchers prior to the KDD Cup.
Each data set will be broken into two files, a training file and a test file. A third file, a
submission file, will be provided for submitting results. The submission file will contain a
subset of the columns in the test file.”(PSLCDataShop, 2010a)

HIERARCHICAL AGGREGATION PREDICTION METHOD

The challenge site had an evaluation program that would compare the predictions provided
against the undisclosed true values and report the difference as Root Mean Squared Error (RMSE).
The value to be evaluated was the Correct First Attempt, a binominal feature that states if an
student was able to solve a step (1) or not (0) in the very first time she visited it. From now on
Correct First Attempt would be the label feature to be predicted.

3. k-Nearest Neighbors

Empirically we set to find the best features to be used for the k-nearest neighbors (k-NN) classification
algorithm (Cover and Hart, 1967) based on an explicit similarity measure, k-NN is a method for
classifying objects based on closest training examples in a feature space. It is a type of instance-based
learning, or lazy learning where the function is only approximated locally and all computation is
deferred until classification. The k-nearest neighbors algorithm is amongst the simplest of all machine
learning algorithms: an object is classified by a majority vote of its neighbors, with the object being
assigned to the class most common amongst its k nearest neighbors (k is a positive integer, typically
small). If k = 1, then the object is simply assigned to the class of its nearest neighbor. We decided
to use k-NN due to its ease of implementation and simplicity of design, requiring a single parameter
to be trained: the total number of neighbors k. We found the best parameters by doing all the
initial simulations in the smallest data set (Algebra I 2005-2006) in order to reduce computational
time, then apply the algorithm with the best parameters to the challenge data. This section deals
only with the data in Algebra I 2005-2006.

3.1 Features

As a distance based algorithm, k-NN can generate a more precise prediction the least dimensions it
has to deal with(Beyer et al., 1999). Thus, we only took into consideration the features common to
both training and testing sets. We decided to leave out all the features missing in the testing set
leaving us with the following features subset:

e Selected features: Row, AnonStudentld, ProblemName, StepName, ProblemHierarchy,CorrectFirst Attempt,
KCDefault, OpportunityDefault.

e Features left out: StepStartTime, CorrectTransactionTime, FirstTransactionTime, StepEnd-
Time, ProblemView, StepDurationsec, CorrectStepDurationsec , ErrorStepDurationsec, Incor-
rects, Hints, Corrects.

To even further minimize the required features, we applied Forward Selection (Liu and Hiroshi, 1998)
to the this features set, leaving use with the next features only: AnonStudentld, ProblemHierarchy,
ProblemName, StepName. These features are individually the most relevant, we aggregate their
values in respect of Correct First Attempt to obtain their average, variance, sum, count and incorrect
count. Our final feature set becomes:

Row averageProblemHierarchy | countAnonStudentId
AnonStudentId varianceProblemHierarchy | incorrectAnonStudentld
ProblemName sumProblemHierarchy averageStepName
StepName countProblemHierarchy varianceStepName
ProblemHierarchy incorrectProblemHierarchy | sumStepName
CorrectFirst Attempt | averageAnonStudentld countStepName
KCDefault varianceAnonStudentId incorrectStepName
OpportunityDefault | sumAnonStudentld

PEREZ, RUBENS, OKAMOTO

| Measure | Euclidean Distance | Jaccard Similarity |

k 55 6
accuracy 0.8111 0.8139

Table 2: Best results for k-NN. Notice how both distance measures have similar accuracy, yet Jaccard
requires far less neighbors k. Less neighbors means reduced processing time.

3.2 Distance Measures

Considering how different different distance features could work differently with distinct types of
data, we tried to find which distance measure could be the most appropriate for each case. Using
the feature set generated in the previous Section 3.1, we applied k-NN a total of 1500 times with
different distance measures and number of neighbors k. Although ,we would have liked to try a
mayor quantity of different parameters, due to time constrains this was not possible. The set of
parameters chosen for application was:

e Distance measures:

— Numerical: Dynamic Time Warping Distance (Sakoe and Chiba, 1978), Inner Product
Similarity (Falkowski, 1998), Jaccard Similarity (Jaccard, 1901), Kernel Euclidean Dis-
tance (Rieck et al., 2006), Manhattan Distance (Krause, 1987), Max Product Similarity
(McAdams et al., 1999), Overlap Similarity (Lawlor, 1980), Dice Similarity (Dice, 1945),
Euclidean Distance (Deza and Deza, 2009), Camberra Distance (Teknomo, 2008), Cheby-
chev Distance (Cantrell, 2000), Correlation Similarity (Tan et al., 2005), Cosine Similarity
(Tan et al., 2005).

— Nominal: Jaccard Similarity, Dice Similarity, Nominal Distance (Teknomo, 2008), Kul-
czynski Similarity (Sgrensen, 1948), Simple Matching Similarity (Teknomo, 2008), Rogers
Tanimoto Similarity (Shafer and Rogers, 1993), Russell Rao Similarity (Deza and Deza,
2009).

e Total number of k: 75 different k in the range from 1 to 1001 increasing in a logarithmic scale.

We consider two types of distance measures: numerical and nominal. In order to apply the different
types of measures the data set was converted into two different sets. One purely numerical, was
generated by converting nominal values into numerical ones by means of simple id assignment. And
one purely nominal, generated by discretizing numerical values into ranges, then acknowledging each
range as a category or class. We ran a total of 1500 simulations for k-NN, 975 times for the numerical
set and 525 times for the nominal set. To verify the performance of each simulation, the predictions
where validated against the real values that came in the master file to find the relative number of
correctly classified CorrectFirstAttempt. The results of the simulations are shown in Figure 1 for
the numerical data set and Figure 2 for the nominal data set.

As an interesting observation from this experiment, both numerical and nominal only data can
reach almost the same accuracy. Surprisingly, the distance measure has not a strong effect on
accuracy, all distance measures in each category (numerical and nominal) generate similar results.
The maximum accuracy for numerical data was acc = 0.8111 using Euclidean Distance and k = 55,
while nominal measures yielded acc = 0.8139 accuracy using Jaccard Similarity and k = 6 (Table
2). Due to the steep difference in performance, the decreased number of neighbors k needed as well
as the better accuracy, nominal measures were chosen over the numerical ones, specifically Jaccard
Similarity.

HIERARCHICAL AGGREGATION PREDICTION METHOD

@® DynamicTimeWarpingDistance @ InnerProductSimilarity @ JaccardSimilarity
numerical_meassure O KernelEuclideanDistance © ManhattanDistance @ MaxProductSimilarity
@ EuclideanDistance © CamberraDistance O ChebychevDistance O CorrelationSimilarity

O CosineSimilarity @ DiceSimilarity @ OverlapSimilarity

0.810
0.805
0.800
0.795 2

0.790 &D
0.785
0.780
0.775
0.770
0.765

0.760 Q

0 100 200 300 400 500 600 700 800 900 1,000

Q

S e W 4,

accuracy

Figure 1: k-NN applied 75 times using different number of k neighbors and numerical similarity
measures. Notice how accuracy improves the more k neighbors we use, but after certain value
(k = 55) accuracy tends to reduce again.

nominal_meassure @ JaccardSimilarity @ NominalDistance © DiceSimilarity @ RussellRaoSimilarity

O SimpleMatchingSimilarity © KulczynskiSimilarity @ RogersTanimotoSimilarity

0.8150
0.8125
0.8100
0.8075
0.8050
0.8025
0.8000

accuracy

0.7975
0.7950

0.7925
0.7900

0.7875 B
4]

0.7850

0 100 200 300 400 500 600 700 800 900 1,000
k

Figure 2: k-NN applied 75 times using different number of k neighbors and nominal similarity
measures. Notice how accuracy improves the more k neighbors we use, but after certain value (k = 6)
accuracy tends to reduce again. The accuracy is greater than when using numerical measures (see
Figure 1).

PEREZ, RUBENS, OKAMOTO

3.3 Implementation

In order to implement k-NN we tried to apply the model to the challenge data set Bridge to Algebra
2008-2009. This proved to be a daunting task due to the size of the data set, while the Algebra
I 2005-2006 training set was only 216 MB, the Bridge to Algebra 2008-2009 training set has a
total of 5.3 GB. 25 times the size of the set that had been using for finding the best parameters.
Hardware wise, the system used for this championship was a Intel Core i7 CPU with 12 GB RAM,
with Rapid-I’s Rapid Miner 5.0.003 (Rapid-i, 2010), an environment for machine learning and data
mining experiments written in Java, as our data mining tool. We were unable to make it work
with the desired performance level though. This led to a series of problems, from how to load the
data in memory yet working with it in a parallel concurrent mode. We had to redefine our Rapid
Miner Processes to divide and then join the data again, this lead to even further memory usage,
running out of it and resorting to the use of hard drive space as swap memory. Another issue was
the processing time, with our available equipment it would have required about 450 days to complete
the k-NN model, much more than the available time to complete the challenge, and simply put, an
unfeasible amount of time under any situation. The model worked well in the small data, requiring
about a couple of hours to complete, but as the data grew in size, all these complications made us
realize we had to opt for another path of action.

4. Hierarchical Aggregation Prediction Method

Mainly due to time limitations, we had to find a more efficient methodology, k-NN proved to take
too long (Section 5). As mentioned in Section 3.3, we had been working with Rapid Miner, but
implementing the algorithm with heavier data loads was proving to be increasingly difficult. With
little time to build a new algorithm from scratch or to implement a more efficient one on a faster
programming platform (Rapid Miner runs on Java), we decided to use plain SQL, then load all the
data into our small server.

We designed a methodology we call hierarchical aggregation prediction, this methodology searches
for all the combinations of numerical features while filling data gaps (missing data). Then, it searches
these combinations of features in a hierarchical fashion, going for the biggest combinations to the
single original features. hierarchical aggregation predicts the value related to a set of features based
on previous data about those features. This value can be predicted in the form of an aggregation
function (variance, median, mean, sum, count, maximum, minimum, mode). Basically, the method
finds all the possible combinations of a selection of features, generate new combined features from
those combinations, aggregate them and generate a prediction for a subset of the features. Figure 3
explains how the features are aggregated by presenting a practical example.

Each of these newly generated features is assigned to a level, where the level is equal to the
number of original features involved in its generation, the maximum level being equal to the total of
original features there is. Once all the possible combinations are generated and aggregated, the best
prediction is selected hierarchically, going from the highest to the lowest level. Once a prediction is
found at a given level, there is no need to go further down, thus the method skips any more levels
there could be and continues looking for the next set of features and their associated prediction. If a
set of original features is found in two or more of the new features in the same level, the predictions
are averaged. This process is explained with a practical example in Figure 4. The flowchart for the
method is presented in Figure 5 and Figure 6.

4.1 Applying Hierarchical Aggregation to the KDD Cup

As explained in Section 2, the main task inf the KDD Cup 2010 was to predict the value of Correct
First Attempt, this feature represents the probability an student has of solving a step in the first

HIERARCHICAL AGGREGATION PREDICTION METHOD

id 1 f2 3 output
(y)
1 5 2
f12 f32 Y,
L P
2(6)8(2 s 6 | 2 20 .
§ A {] f1,3 aggregation
=0 =———"> 1,3=aggr(y,.y;)
— — f1 f33 Y3
JEDREE
— [—
3 5 8
4 6 5 6 ~—

Figure 3: Aggregation of features. Suppose we want to create the feature 1,3 (f1,3), this is a
combination of feature 1(f1) and feature 2 (f2). The method chooses only the rows where both
features have values (not null), id = 2 and id = 3. Then it aggregates the values of the label to
generate the new feature f1, 3.

aggregated
fi 12 18 prediction (y)

Level
= T
¥ Kl
Level ! ! 5
2 2 1 2 aggregated
3 3 #1=3, fo=2 fl 2 1 prediction (y)
——— I — ! [-
2 1
i f1 f2 13 aggregaled f f average
= = = rediction 1=3, f3=3
v 2|3 5 f1=3, f2=2, 13=3 p (% (y(3nu||3)y(nu||23)) eciton
- —— (D & —
3 K——*L s
evel
6 Prediction not found f2=2,13=3 2 |1
1 C 2 3
[] 2
Level 5 |
1 2 L vel 2
4 Predictions found!
—
s
1
;
X

Figure 4: Selection of aggregated prediction. Using a training set of 3 features as starting point,
predictions are generated by combining and aggregating these original features (Figure 3). Suppose
we want to find the prediction for f1 = 3, f2 = 2 and f3 = 3. Hierarchical aggregation searches
into the highest level (Level 3) for a row where all the necessary values are present, since there is
no such row, it continues to the next level searching for rows where any combination of two features
is present, two such rows are found (f1 =3, f3 =3 and f2 = 2, f3 = 3). The predictions are read
from these rows, then averaged to generate the final prediction.

attempt, in the training set it always takes a value of 0 (not solved) or 1 (solved). Yet, the submitted
prediction can take any value between 0 and 1.

As explained in before, in order to maximize the information relevant to Correct First Attempt,
by Forward Selection a set of features is chosen, these features are present in both the test and
training data sets. Hierarchical aggregation searches for the features with the least missing values in

PEREZ, RUBENS, OKAMOTO

Start

1. Read
Training set

|

2. Find the most
useful nominal
Features by
Forward Selection

3. Create new
Features by
aggregation

Figure 5: Flowchart of hierarchical aggregation prediction method. First the method loads the
training set (Step 1). Then, it uses Forward selection to find the most useful nominal features (Step
2). It aggregates those features, this generates a set of partial predictions dependant on its features
(Step 3, Figure 6a). Finally those predictions are read and averaged again to predict the value of
the label (Step 4, Figure 6b). In general, hierarchical aggregation generates a set of predictions by
averaging smaller sub-predictions, then choosing only those with the most specific data.

3.1. Read
features

3.2. Find all
possible
not repeated
combinations

A,

3.3. Read
next feature

v

3.4. Aggregate
features

More
eatures?

~o—{ Ena |

(a) Aggregator process, sub process of hierarchical aggre-
gation model (Figure 5, Step 3). The selected features are
read(Step 3.1), then their combinations generated (Step
3.2). Then each combination generates a new table pre-
dictions by aggregation (Step 3.4). These tables are stored
in the ”predictions by feature” database. This process ba-
sically generates a set of sub-predictions based on combi-
nations of features. Each one of these new sets is a table
composed of each of its features to be used as key as well
as a prediction per each of these keys.

Figure 6: Aggregator process and Prediction reader.

prediction method (Figure 5).

-

NO

YES

(b) Prediction reader, sub process of hierarchical aggrega-
tion model (Figure 5, Step 4). Using the values from the
features in the Testing data set (Step 4.1), the method
searches for a prediction in the ”predictions by feature”
data base, hierarchically reading from the table with the
most features to the one with the least, this is, from high-
est to lowest level(Steps 4.2, 4.3, 4.4). Then all the pre-
dictions found in the same level are aggregated (Step 4.5).
This average is our the prediction. This process finds a
final prediction of a combination of all the features in the
test set.

Sub processes of hierarchical aggregation

HIERARCHICAL AGGREGATION PREDICTION METHOD

Level 1 Level 2 Level 3 Level 4

Anon Student Id
Problem Hierarchy
Problem Name

Anon Student Id
Problem Hierarchy

Anon Student Id
Problem Hierarchy

Step Name
Anon Student Id

Anon Student Id
Problem name
Step Name

Anon Student Id
Problem Name

Anon Student Id
Step Name

Problem Hierarchy
Problem Name
Step Name

Problem Hierarchy
Problem Name

Problem Hierarchy

Problem Hierarchy
Step Name

Anon Student Id
Problem Hierarchy
Problem Name
Step Name

Problem Name
Step Name

Problem Name
Step Name

Figure 7: Tables generated by aggregation of averages. The information from Correct First Attempt
was aggregated in each different combination of Anon Student Id, Problem Hierarchy, Problem Name
and Step Name. Level 1 are the initial attributes, level 2 have 2 attributes each, level 3 have 3 each
and level 4 has all the attributes. The hierarchical aggregation model will take each of these tables
from the highest to lowest level (4 to 1). At each level it will search for a row where all the features
are included, if this is not possible, it will search for one where some features are included and the
remaining features in another table at the same level. If taking the predictions from different tables,
they will be aggregated. Once a prediction is obtained an a level, all the lower levels are not searched
and the process starts again with the next combination of features.

both sets: Anon Student Id, Problem Hierarchy, Problem Name and Step Name. Using these four
initial features it aggregates Correct First Attempt values to find the average per each value. Any
aggregation value could be used at this step, for this specific problem we decided to use average.

The method tries to find the most specific information to generate a prediction. For example,
the student with the Anon Student Id ’02i5]CrfQK’ has solved a total of 0.7771 steps correctly on
her first attempt (Correct First Attempt), and the problem with the Problem Name '1PTB02’ has
been solved 0.8693 correctly on the first attempt on average. Not all the information is covered
by any of these four features individually, this is, student ’02i5jCrfQK’ has not tried to solve all
the problems, in the same way as problem '1PTB02’ has not been tried by all the students. Also,
the information generated by the individual features is too wide, this is, if student ’02i5jCrfQK’ has
solved a total of 5,171 steps, her 0.7771 average covers too many different steps to be reliable enough
to predict a single one. To address these issues the method creates new features by averaging the
four initial ones. This aggregation is done by combining the features in sets of 2, 3 and 4 single
features. Hierarchical aggregation generates a total of 15 different features, the 4 original ones, 6
composed of 2 features each, 4 composed of 3 and finally a single one derived from all the 4 original
features. A graphical representation of the data base model created for the KDD Cup is presented
in Figure 7. Each of these new features holds less predictions the more features involved, also each
prediction becomes more accurate as it is more specific. Also, each feature is stored in a SQL table
composed of the original features as its key and it respective prediction.

As mentioned before the student '02i5jCrfQK’ has a 0.7771 average given just by the informa-
tion coming from Anon Student Id, problem '1PTB02’ has 0.8693 using only the information from

PEREZ, RUBENS, OKAMOTO

Algorithm 1 prediction selection and averaging algorithm

Require: Enhanced training data sets with predictions Ly 4

P Afe: P Afu: P {1 S PY AL 30 PHoAfaer, fo t P {{fl,fz n P}}}

where f =features, n =Total of features, x =Total combinations of features
Require: Test data set T : {f1...fn}

Prio.ny =0
fori=0,...,n do
for j = Liazy-- -, Limin do
agg =0
count =0

for alll € L; do
if any combination of values {f1. f,}inT; €l then
agg < agg +1{P}
count < count + 1
end if
end for
if count > 0 then
Priyy < agg/count
end if
end for
end for
return the predictions Pr

Problem Name, but if we look for specifically the student solving that problem in "AnonStudentld-
ProblemName” we find a value of 0.9411 that repeats only 16 times, a far more specific value than
5,171 in Anon Student Id or 1,796 in Problem Name. With all the new possible combinations
generated, the method proceeds to predict the values of the test set. To do this, it searches for each
required row in the 15 different tables. The method searches first in the most specific feature, this is
”AnonStudentId-ProblemHierarchy-ProblemName-StepName”, as this table requires the most data
for a prediction to be found, the method will find the least predictions in it, one a single feature
missing from the key (for example "Anon Student Id”) will mean the prediction is not in this table.
So the next step is to search in the following level, the tables generated of only 3 prime features. If
the prediction has already been found in the previous level the method skips all subsequent search
and continues to the next set of features, if not it searches in theses 4 tables (Level 3). If the pre-
diction is found in 2 or more tables at the same level, they are aggregated and the result returned.
This process continues until all the predictions are found, some of them will be found in the highest
level, will have the most accuracy and require the least processing time, but some others will have a
single feature to search them (Anon Student Id, Problem Hierarchy, Problem Name or Step Name)
and will have to get their value from one of the less accurate Level 1 tables. The algorithm for this
process can be seen in Algorithm 1.

In summary, the method finds all the possible combinations between ”AnonStudentId”, "Prob-
lemHierarchy”, "ProblemName” and "StepName” leading to a total of 15 tables including the single-
feature ones. This is, each new table was generated by averaging the values of "AnonStudentId”
with "ProblemHierarchy”, then with "ProblemName”, then with "StepName”, then averaging the
new "AnonStudentId-ProblemHierarchy” value with "ProblemName”, then with "StepName” and so
on. Once it has all these new values, they are aggregated from the ones encompassing the most
features to those with the least, this way it can start from taking in the most specific information
(like how an student performed in a single problem) to the most general information (How the same
student performed in average in all his problems). This helps to collect information that is specific
to the combination we are asking for, but if that combination has no information (the case where

10

HIERARCHICAL AGGREGATION PREDICTION METHOD

a student did not even see one problem), we can fill that gap by pulling the data from the more
general one (the average number of times a problem has been solved correctly).

4.2 Implementation

The hierarchical aggregation model was implemented in SQL, using MySQL 5.1 (MySQL, 2010) and
python 2.6.5 (Python, 2010). The main problem with this approach was the time it takes to generate
all the possible combinations, especially considering the biggest data set, Bridge to Algebra 2008-
2009 contains 20012498 data points. On the system we were using, the whole model was supposed
to take 3 days to finish, due to time constraints it had to be cut short after one day, leaving us with
incomplete results to submit. Optimization and tweaking of the method is still necessary, the most
time intensive process being generating and aggregating the predictions by features. Execution time
could have been reduced if the method had been implemented it on a faster programming platform
(this is, to implement everything directly in Python or C++ without the use of SQL).

5. Evaluation

After implementing the hierarchical aggregation, the error generated was RMSE = 0.31382 for
Bridge to Algebra 2008-2009 and RMSE = 0.33892 for Algebra I 2008-2009. We conclude that
there is a big difference in the power of the algorithms when it comes to the volume of data. While
k-NN worked flawlessly with the small sets of data, working with big data like the one in the challenge
sets brings forth new challenges in processing and time limitations. In this paper we exposed our
journey from the initial theoretical approach on the data to the final hierarchical aggregation method
that generated the final submission. By refining programming and implementation techniques our
proposed hierarchical aggregation methodology could be extended to even bigger and more complex
data. Since it uses simple iterations and generates most of the data it requires on an small subset,
it can be easily parallelizable leading to even further increments in processing speed.

Algorithm @ kNN @ Hierarchical Aggregation

10,000 °
5,623.413
3,162.278
1,778.279
1,000
w
£ se23a
o 316.228
£ 1r7ss
j=2
100
£ °
g se23
g 31623
o

17.783
10
5.623
3.162
1.778
1 _
Algebra | 2005-2006 Algebra | 2008-2009 Bridge to Algebra 2008-2009

Data Set

Figure 8: Comparison between k-NN and hierarchical aggregation. Processing time is stated in log-
arithmic scale. Notice how k-NN takes a much longer time to process than hierarchical aggregation.

Even though we lost a good amount of time searching for the best parameters for k-NN, we
managed to realize the time limitations soon enough to change the focus of the model, also this
helped to give us some insight on the nature of the data and change our priorities in time. A
comparison between the processing times of both methodologies is presented in Figure 8 While

11

PEREZ, RUBENS, OKAMOTO

originally we were looking to achieve the most accurate possible prediction, in the end, the most
pushing matter was the best use of computational resources as these were limited. We will keep
working in the problem of big data and better ways to deal with it, including enhancements of
our hierarchical aggregation model. The precision of the prediction was measured by Root Mean
Squared Error (RMSE), which is presented in Table 3 for both methodologies.

Data Set Algebra I 2005-2006 Algebra I 2008-2009 Bridge to Algebra 2008-2009
Algorithm k-NN HA k-NN HA k-NN HA
RMSE 0.36053 0.36999 Not finished | 0.33892 | Not finished 0.31382
Processing time (hrs) 2.24 1.5 3,328.49 16 10, 899.09 78

Table 3: Comparison of k-NN and hierarchical aggregation (HA). Hierarchical aggregation outper-
forms k-NN using the same hardware setup. Notice Root Mean Squared Error (RMSE) in the
7Algebra I 2005-2006” data set, k-NN produces slightly less error than hierarchical aggregation. If
given enough time to process the data k-NN would yield better results , the main problem with this
methodology is that even being one of the fastest algorithms known, the time required to complete
keeps growing accordingly to the data it uses to train and test. Hierarchical aggregation was selected
for its computational economy.

6. Conclusion

While many methods may theoretically be able to achieve good accuracy. However, in practice,
when working with real data, that same model may be crushed by the sheer size of the data.

k-NN is a strong and reliable algorithm that has survived for many years due to its simple yet
robust design, yet it has some disadvantages. Originally we decided to use k-NN because we were
aware of the computational power required to implement other more novel algorithms. By making
use of simple measure distances that involve nothing more than basic arithmetic operations in a
linear fashion, k-nearest neighbors stands as one of the fastest algorithms for classification. Still, its
sequential nature is also the reason it requires much more computing power and time proportionally
to the quantity of data it has to analyze.

Our hierarchical aggregation method stays away from the sequential processing of data. It is
able to find a prediction as soon as possible, even if it is not the most accurate one, by taking
advantage of the hierarchical predication structure (deeper predictions are more accurate, but take
longer to compute). An interesting fact is that, due to the nature of MySQL, the hardware in which
hierarchical aggregation was running was never fully capped, it was at most using 50% of system
resources. On the other hand, k-NN kept going to the point where it had the machine working
at 100% of capabilities (processors topped, RAM completely full). We will continue developing
hierarchical aggregation to minimize processing times when it comes to dealing with big data sets.

12

HIERARCHICAL AGGREGATION PREDICTION METHOD

References

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor meaningful? In
7th International Conference on Database Theory, pages 217-235, 1999.

C. D. Cantrell. Modern Mathematical Methods for Physicists and Engineers. Cambridge University
Press, 2000.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Infor-
mation Theory, 13:21-27, 1967.

E. Deza and M. M. Deza. Encyclopedia of Distances. Springer, 2009.

L. R. Dice. Measures of the amount of ecologic association between species. FEcology, 26:297-302,
1945.

B.-J. Falkowski. On certain generalizations of inner product similarity measures. Journal of the
American Society for Information Science, 49:854—858, 1998.

P. Jaccard. Etude comparative de la distribution florale dans une portion des alpes et des jura.
Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547-579, 1901.

E. F. Krause. Tazicab Geometry. Dover, 1987.
L. R. Lawlor. Overlap, similarity, and competition coefficients. Ecology, 61:245-251, 1980.

H. Liu and M. Hiroshi. Feature Selection for Knowledge Discovery and Data Mining. The Springer
International Series in Engineering and Computer Science. Springer, New York, 1998.

D. A. McAdams, R. B. Stone, and K. L. Wood. Functional interdependence and product similarity
based on customer needs. Journal Research in Engineering Design, 11:1-19, 1999.

MySQL. Mysql, 2010. URL http://www.mysql. com.

PSLCDataShop. Kdd cup 2010 educational data mining challenge, 2010a. URL
https://pslcdatashop.web.cmu.edu/KDDCup.

PSLCDataShop. Kdd cup 2010 educational data mining challenge - data format, 2010b. URL
https://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format. jsp.

Python. Python programming language — official website, 2010. URL http://www.python.org.
Rapid-i. Rapir miner, 2010. URL http://rapid-i.com.

K. Rieck, P. Laskov, and K.-R. Miiller. Efficient algorithms for similarity measures over sequential
data: A look beyond kernels. Lecture Notes in Computer Science, 4174:374-383, 2006.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition.
IEEFE Transactions on Acoustics, Speech and Signal Processing, 26:43—49, 1978.

S. M. Shafer and D. F. Rogers. Similarity and distance measures for cellular manufacturing. part i.
a survey. International Journal of Production Research, 5:1133-1142, 1993.

T. Sgrensen. A method of establishing groups of equal amplitude in plant sociology based on
similarity of species and its application to analyses of the vegetation on danish commons. Biologiske
Skrifter / Kongelige Danske Videnskabernes Selskab, 5:1-34, 1948.

13

PEREZ, RUBENS, OKAMOTO

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley, 2005.

K. Teknomo. Similarity measurement, 2008. URL http://people.revoledu.com/kardi/tutorial/Similarity.

14

