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Cognitive tutors and models

Cognitive Model: A system that can solve problems in the
various ways students can

3(2x - 5) = 9

\ If goal is solve a(bx+c) =d
Then rewrite as abx + ¢ =d

If goal is solve a(bx+c) =d
Then rewrite as bx+c = d/a

6x-15=9 2X-5=3 6x-5=9

If goal is solve a(bx+c) =d
Then rewrite as abx + ac =d

e Model Tracing: follow students through individual
approaches to a problem = context-sensitive instruction
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Cognitive tutors and models

Cognitive Model: A system that can solve problems in the
various ways students can

3(2x-5) =9
K ?=85% ch K ?=45% K ?=15%
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6x-15=9 2Xx-5=3 6x-5=9

e Model Tracing: follow students through individual
approaches to a problem = context-sensitive instruction

e Knowledge Tracing: Assess student's knowledge growth
= individualized activity selection and pacing
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Cognitive tutors and models

Cognitive Model: A system that can solve problems in the
various ways students can

3(2x - 5) = 9

N

Bug message: “You need to
multiply ¢ by a also.”

Hint message: “Distribute a
across the parentheses.”

/ N
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nown C agce I’]OWI’]v nown‘ — hopefu”y |0W
6x-15=9 2x-5=3 6x-5=9

e Model Tracing: follow students through individual
approaches to a problem = context-sensitive instruction

e Knowledge Tracing: Assess student's knowledge growth
= individualized activity selection and pacing
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Latent Factors

Model tracks what skills student currently
knows—I/atent factors

recognize-term

o o Latent
distribute-multiplier (unobserved)
divide-both-sides
right-answer Observed
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Getting the model right!

Cognitive model determines instruction

2 Through instructional decisions like problem
selection, hints, ...

A correct model is one that is consistent with
student behavior, predicting fask difficulty and
transfer between instruction and test

Cognitive models are discovered not
designed
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Getting the model right!

Cognitive model determines instruction

2 Through instructional decisions like problem
selection, hints, ...

A correct model is one that is consistent with
student behavior, predicting fask difficulty and
transfer between instruction and test

Cognitive models-are-discovered not
designed should be

= Huge data mining opportunity
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It's not easy

Student models are a key bottleneck in
cognitive tutor authoring and performance

2 rough estimate: 20-80 hrs to hand-code model for
1 hr of content

2 result may be too simple, not rigorously verified
But, demonstrated improvements in learning
from better models

2 E.g., Cen et al [2007]:12% less time to learn 6
geometry units (same retention) using tutor w/
more accurate model
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Using learning curves to
evaluate a cognitive model
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Modify cognitive model

Blips occur when a new, unmodeled latent skill appears
Split skill into two new skills
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With new model, tutor can treat these skills separately



Automated detection of "blips” in
learning curves

We identified a latent factor by manually
examining learning curves

Can we automate the process of finding
latent factors?

2 increase repeatability, reduce bias, reduce human
expert time

2 will still need human judgement to connect the
identified latents to properties of the problems
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Statistical model of learning curves

Additive Factor Model (Draney et al., 1995)
Logistic regression model of P(correct answer | skill info)

Dij
log ——— =0+ BuQu; + Ekj Qrj (1 Tik)

pij I
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Statistical model of learning curves

Additive Factor Model (Draney et al., 1995)
Logistic regression model of P(correct answer | skill info)

Correct? Step | uses

skill k
\p. . /
ij

/
log =0;+ Y BrQrj+ Y Quj(vuTix)
— Dij k k \
Opp
count
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Statistical model of learning curves

Additive Factor Model (Draney et al., 1995)
Logistic regression model of P(correct answer | skill info)

Correct? Parameters Step | uses

skill k
log —7— =0; + Y BuQu; + > Qx; vaz-\k)
k

1 _ng I

Opp
B = student mean count

—B = skill difficulty
v = skill learning rate
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AFM problems

Requires a lot of up-front time from expert to
define skills

Can potentially discover automatically that
skills are wrong, but can’t fix automatically
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‘A possible answer: PCA

PCA: estimates latent factors under linear-Gaussian assumption
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PCA: the model

U: Gaussian (0 mean, fixed var)

V: Gaussian (0 mean, fixed var)

- X: Gaussian (fixed var, mean at left)
/ N\

student factor item factor

Q latent
O observed

\
k latent factars @ )
n students
\
. k latent factors
m items
\ J
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‘PCA is @ widely used and
successful model

Movies

Users
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‘PCA is @ widely used and
successful model

Movies

Users

Each entry: how many stars
does user i give to movie j?
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‘PCA is @ widely used and
successful model

Movies

Users

Each entry: how many stars

Often: missing datal D 0,
does user i give to movie j?
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‘ Result of factoring

Movies

Basis weights

Basis vectors

Users

Low-d basis = latent variables

Basis vectors represent latent
properties of movies, e.g., “is a
comedy”
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‘In

our Case.

Students

student-item data

ltems in tutor
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‘In

our case: student-item data

ltems in tutor

Students

Each entry: does student /
get item j right?
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‘Interpretation of factors

ltems

Basis weights

Basis vectors

Basis vectors are candidate
“eigenskills”

Students

Weights are students’
knowledge levels
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PCA: the good, the bad, and the

ugly

Good: popular,
successful,
unsupervised

Bad: linear,
Gaussian

Ugly: maximum
likelihood causes
overfitting, even
w/ lots of data
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inearity: conjunctive skills
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Hierarchical Bayesian
exponential-family PCA

4 e ~ Q observed Q unobserved

K latent factors : N@ N
n students )
\ O—E

m items

\ ./
U: student latent factors N KTatent factors
V: item latent factors oy
X: observed performance (] _ Z , ,
R: shared prior for student latents log (1 — p; j) Uik Vig
S: shared prior for item latents k /

logistic PCA  student factor
item factor
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Comparison to AFM

AFM:  log ] fz; =0; + Z BrQr; + Z Qr;j (vxTik)
(] k k

p = probability correct

0 = student overall performance

B = skill easiness / difficulty ol| T, v Q
Q = item x skill matrix

y = skill practice slope

0 B

T = number of practice

opportunities
Bayesian logistic PCA: log ( ) Ui Vijk
—py) = 2V,
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‘Geometry Area 1996-1997 data

student 1

student not
presented
with item

student 2

student 3

student
answered
the item

student 4

student 5 student

answered
the item, but
we hide the
answer

student 6

student 7

139 items presented to 59 students
Learn model on 2/3 of responses, test on 1/3
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‘Results: hold-out error

0.42

0.4

0.3

0.28

I Bayes logistic PCA

) Bayes PCA

B AFM: textbook

[Baseline: mean

Embedding dimension
is k = 15, except PCA
+AFM where k = 1

Credit for
logistic PCA:
Ajit Singh
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Still missing

A way to include time in PCA

A way to encourage interpretable |latent
models

A way to take advantage of partial prior
knowledge of model
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