
Is the Doer Effect a Causal Relationship?  
How Can WE Tell and Why It’s Important 

Kenneth R. Koedinger  
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15201 

koedinger@cmu.edu 

Elizabeth A. McLaughlin 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15201 

mimim@cs.cmu.edu 
Norman L. Bier 

Carnegie Mellon University 
5000 Forbes Avenue 
Pittsburgh, PA 15201 
nbier@cmu.edu 

 

Julianna Zhuxin Jia 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15201 

zhuxinj@andrew.cmu.edu 
 
 
 

ABSTRACT 
The “doer effect” is an association between the number of online 
interactive practice activities students’ do and their learning 
outcomes that is not only statistically reliable but has much higher 
positive effects than other learning resources, such as watching 
videos or reading text. Such an association suggests a causal 
interpretation--more doing yields better learning--which requires 
randomized experimentation to most rigorously confirm. But such 
experiments are expensive, and any single experiment in a 
particular course context does not provide rigorous evidence that 
the causal link will generalize to other course content. We 
suggest that analytics of increasingly available online learning 
data sets can complement experimental efforts by facilitating 
more widespread evaluation of the generalizability of claims 
about what learning methods produce better student learning 
outcomes. We illustrate with analytics that narrow in on a causal 
interpretation of the doer effect by showing that doing within a 
course unit predicts learning of that unit content more than doing 
in units before or after. We also provide generalizability evidence 
across four different courses involving over 12,500 students that 
the learning effect of doing is about six times greater than that of 
reading.   
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1. INTRODUCTION 
One general challenge for learning analytics in particular, and 
for learning science and practice in general, is how to reliably 
determine what are the most effective methods for supporting 
learning and under what circumstances do those methods work. 
We argue that learning analytics has something distinct and 
important to offer as an answer to these questions. Whereas 
random assignment controlled experimentation is considered the 
gold standard for determining whether a method of learning is 
effective [9], it does not provide evidence on whether that 
learning method will generalize to other courses and course 
contexts. In contrast, the increasing availability of process and 
outcome data from online courses [16] makes it possible to 
investigate the generalizability of associations between learning 
method and outcomes. Because such data comes from naturally 
occurring variations in use rather than from random assignment, 
we cannot be sure that those associations are causal. However, 
such data adds evidence for generalization (or lack thereof) that 
comes at  a  much  lower  monetary  and social/ethical  cost  than 
would be needed to do random assignment experiments across all 
of these naturally occurring contexts [cf., 3]. 

In more technical terms, an experiment provides strong internal 
validity for causal inference but provides no external validity for 
generalization of the method to contexts not sampled in that 
experiment. Analysis of associations of method and outcome 
threatens internal validity, but doing so across many naturally 
occurring contexts provides external validity at a much lower cost 
than doing experiments in all these contexts.  

Without the costs of designing and executing any experiments, we 
have five data sets that were collected as a natural part of five 
courses from four different content areas. While most 
experiments typically evaluate one method (with two conditions), 
these data sets allow us to analyze outcomes associated with three 
different methods (doing activities, reading text, or watching 
video lectures) for one course and two different methods (doing 
and reading) for four courses. To do 11 controlled experiments in 
these real world contexts would be a much more costly 
undertaking.  

Another key point of the current paper is to explore analytic 
techniques that help eliminate alternative causal interpretations so 
as to get closer to causal inference even when the data is 
correlational in character. In particular, we explore the use of 
intermediate course unit quiz data to evaluate whether the same 
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student reveals variation in choices across units that is associated 
with better learning outcomes. This cross-unit analysis is also 
another test of generalization of learning method effects across the 
different content types and goals of each unit. 

Lower Cost Analytics Enhances Generalizability 
In a randomized controlled experiment of the effectiveness of a 
method for supporting learning, students are randomly assigned 
to either a treatment condition, where the method is used, or a 
control condition, where it is not. The effect of the conditions are 
compared on how well students do on some common outcome 
measure of learning achievement. Many random assignment 
experiments on learning have been run in labs [e.g., 11]. To use an 
example relevant to this paper, some experiments have compared 
whether having students practice retrieving facts (e.g., What is the 
Chinese word for teacher?) yields better learning than having 
students study facts (e.g., The Chinese word for teacher is 
lao3shi1). Such experiments have demonstrated, with statistical 
reliability, better long term learning outcomes from retrieval 
practice (also called “testing”) than from studying [12, 14]. 
Random assignment experiments like these in the lab have high 
internal validity [1, 18] meaning that we can be confident that the 
method (e.g., more “testing”) is causing the better outcomes.  

Some critics wonder whether these lab results generalize to the 
classroom and thus randomized experiments run within real 
courses are sometimes performed, though often at greater cost in 
terms of both real and social/ethical capital. Classroom studies of 
the testing effect [e.g., 8] add ecological validity by being 
performed with real students and in the context of real courses. 
Even here the few experiments in a limited number of course 
contexts may leave a critic wondering whether these testing 
effects generalize across all course content or might be limited to 
certain kinds of content or contexts. In fact, many of these studies 
have focussed on the learning of facts and verbally communicated 
content [6, 11]. Perhaps the testing effect is less relevant to the 
learning of skills or principles. We do not have sufficient external 
validity evidence. Research on worked examples [e.g., 4, 11, 13, 
15] suggests limits on the testing effect -- these studies find that 
too much practice and not enough studying can yield poorer 
learning outcomes. More generally, the KLI Framework [6] 
outlines empirical and theoretical reasons to believe that many 
methods for learning and instruction do not generalize across 
course content, that is, they work well for some kinds of 
knowledge acquisition but not for others (e.g., sense making 
support is best for learning principles but less for skills and 
arbitrary facts, inductive learning support is best for skills but not 
for facts, and memory supports are best for facts). 

In addition to evidence for the testing effect, there is broader 
advocacy and evidence for related notions of learning by doing 
[e.g., 2] and active learning [e.g., 20]. These terms are arguably 
less precise than the testing effect as they cover a wider set of 
approaches and are more loosely defined. Testing effect studies 
typically involve immediate feedback on responses that provide 
students with an example correct response if they fail to retrieve 
one themselves. In cases where retrieval practice conditions do 
not involve feedback, smaller learning outcomes are observed 
(e.g., see Table 1 in [14]). Timely feedback is employed in many 
learning by doing and active learning applications, however, 
learning by doing is also often used to refer to project-based, 
constructivist, or more open-ended inquiry approaches where 
instructional supports such as immediate interactive feedback on 
student progress are deemphasized and even discouraged [c.f., 4]. 
There is some large-scale evidence of classroom-based benefits of 

interventions emphasizing learning-by-doing or active learning 
including quasi- experiments with non-randomly assigned 
controls [e.g., 5, 20, 21] and classroom-based experimental trials 
with random assignment [e.g., 10,17]. However, in all these 
cases, the treatment conditions vary in many ways from the 
control conditions so as to not isolate active doing as a causal 
ingredient. 

It should be clear that determining causal relationships is 
important for scientific and practical reasons because causal 
relationships provide a path toward explanatory theory and a path 
toward reliable and replicable practical application. Further, we 
need evidence for causes that generalize across a wide variety 
instructional contexts and course content. If we can  be 
increasingly certain a learning method is causally related to more 
optimal learning across a wide variety of contexts and content, 
then that method should be used to guide course design and 
students should be encouraged to use it. Coupling evidence from 
both experiments and analysis of naturally occurring high-volume 
data appears an effective way to increase generalizable certainty. 

Toward Explaining the “Doer Effect” and Exploring its 
Generality 
In prior work, we found that different student choices of 
learning methods (e.g., doing interactive activities, reading online 
text, or watching online lecture videos) are associated with 
learning outcomes [7]. More usage in general is associated with 
higher outcomes, but especially for doing activities which has an 
estimated 6x greater impact on total quiz and final exam 
performance than reading or video watching. One open question 
regarding this “doer effect” is whether the observed association is 
indicative of a causal relationship, that is, that students learn more 
as a consequence of doing more. Alternatively, there may be no 
causal link  between  the  two, but rather some  “third  variable” 
common cause, such as general student motivation to learn, that 
leads to both more doing and better learning. The fact that the 
effect of doing activities is much stronger than that of watching 
videos or reading text suggests that the third variable cannot be 
general to all learning methods but would have to be particular to 
doing -- something like: students who are generally good learners 
desire to demonstrate their competence (“show off”) and doing is 
a better way to do so than reading or watching.  

In this paper we introduce an analysis approach designed to probe 
any such general student trait explanation in contrast to the causal 
explanation. This technique relies on course data involving 
repeated unit assessments throughout the course with process data 
on student use of different learning methods relevant to the unit 
between these assessments. If the causal explanation is correct, 
then the amount of doing a student chooses to engage in during a 
unit should be predictive of their performance on that unit 
assessment above beyond any effect of the amount of doing 
outside that unit. In contrast, if some general trait is an 
explanation then the amount of doing outside a unit should be 
equally predictive (or more because there is more data outside a 
unit) of that unit’s assessment results as the amount of doing 
within that unit. Statistically, a regression model should reveal no 
within-unit effect above and beyond the outside-unit effect. 

A second open question we explore is whether the doer effect 
generalizes across multiple online courses. We do so with data 
from four Open Learning Initiative online courses (Concepts in 
Computing, Introduction to Biology, Introduction to Psychology, 
and Statistical Reasoning) on associations between student 
variation in the amount of doing and their learning outcomes and 
between student variation in the amount of reading and their 



learning outcomes. We focus our investigations on these specific 
research questions: 

1. Can we use cross-course performance data to narrow down the 
possible causal interpretations of the doer effect? 

a. How do individual student resource choices vary across units 
of a course? 

b. Is student performance in each unit better predicted by how 
much they do in those units than by how much they do in other 
units? 

c. Might course unit prerequisite relationships contribute to 
cross-unit doer effects? 

2. Does the doer effect generalize to different courses or to different 
students using similar course materials? 

 

2. CROSS-COURSE PERFORMANCE 
DATA TOWARD BETTER CAUSAL 
EVIDENCE FOR THE DOER EFFECT 
2.1 Method: Context and Nature of Data 
This analysis involves data from students taking the Introduction 
to Psychology as a Science MOOC course offered by Georgia 
Institute of Technology through Coursera. This is the same data 
used in [7] and more details about the course, about student 
characteristics, and about factors leading to drop out can be found 
in that paper. Here we focus on the students who finished the 
course and took all or most of the 11 quizzes (N=1154). Of these 
students, most of them (N=1051) opt to make at least some use of 
corresponding online materials (readings and interactive 
activities) from the Open Learning Initiative (OLI) course titled 
Introduction to Psychology offered by Carnegie Mellon 
University. 

The course is designed to introduce college students to the broad 
topics in the discipline of psychology. The  12-week course 
includes video lectures on each topic (e.g., biopsychology, 
sensation and perception, learning) presented by the course 
professor. In addition, each topic is aligned with modules from 
the Introduction to Psychology OLI course that students are 
encouraged to use as an online textbook and practice 
environment. The course syllabus maps the topics of the lectures 
to the OLI modules for each week. Thus, if students take 
advantage of the course offerings their learning environment 
includes watching videos in Coursera, reading OLI text pages, 
and doing OLI interactive activities. The Coursera portion also 
includes a discussion board, which we do not analyze here, but it 
is addressed in other research [19]. 

Interactive activities are aligned with course learning objectives 
and are embedded in the course content.  They provide 
opportunities for students to test their understanding of concepts 
and to practice skills. Such learning opportunities take various 
formats (e.g., multiple choice questions, interactive simulations, 
drop and drag, matching, and other options) and deliver 
immediate tailored feedback as-needed (e.g., when a selected 
answer is incorrect) or as-requested (e.g., in the form of a hint). 
Many activities are multiple-choice questions, but others, like 
those shown in Figure 1, provide other forms of response 
selection (1a) and response construction, including the open-
ended submit and compare (1b).  In all cases, students have 
immediate access to correct responses. 

After each video lecture for the first 11 weeks of the course, there 
was a quiz. After the final week, students took a cumulative final 
exam. For our by-unit analysis of student activity to outcome 
associations, we focus on their activities in the 11 units associated 
with the 11 weekly quizzes. Each quiz had 10 items on it. Across 
all students and all quizzes the average quiz performance was 8.2 
out of 10. 

Although the course had weekly quizzes aligned to the content for 
that week, students had some flexibility for when they took a 
specific week’s quiz. Given this autonomy and the resulting 
variance in quiz start times, resource data frequencies were 
individualized per student. Two factors were used for attaching 
unit resource data to a weekly quiz: time and content. Data was 
mapped to course content using the syllabus and OLI modules for 
reading and doing, and urls were used for watching (videos had an 
assigned unit number). For each student, all relevant data per quiz 
was tallied until the start time for that quiz, all remaining data was 
considered irrelevant. Therefore, all readings, activities and videos 
associated with the content before a quiz is taken are deemed 
relevant.  

2.2 Results:  Variation in Student Choices 
Before investigating whether within-unit choices better predict 
unit outcomes than outside-unit activities, we first verify that there 
is sufficient variation in individual student resource use choices 
across units of the course to justify our further analysis. We 
wanted to determine whether students vary in how active they are 
during each weekly unit of the course. If students who do a lot of 
activities always do a lot and those that do few always do few, 
then the by-unit analysis we propose will be uninformative. 

To check for variability, we used the activity data from the 1051 
students who accessed at least some pages or activities in OLI 
(103 students in our sample did not). Each of these students 
worked through 11 units, producing 11,561 (= 1051 x 11) student- 
unit combinations. For each of these student-unit combinations 
we compared students’ level of activity within the target unit to 
their activity outside of it. No surprise, these measures are highly 
correlated, R = .68. However, there is variation. To investigate 
how much, for each quiz we grouped students into 5 groups 
(quintiles) based on their within-unit activity and 5 quintile groups 
based on their outside-unit activity. As shown in the bottom row 
of Table 1, outside-unit quintile boundaries produce reasonably 
consistently sized groups (a consequence of having lots of 
opportunity for different levels of outside-unit activity counts 
from the 10 units outside each unit). About 20% of students are in 
each of the lowest or 1st quintile (below about 8 outside- 
activities), the 2nd quintile (below about 185), 3rd quintile (below 
about 426), 4th quintile (below about 538), and the highest or 5th 
quintile (at or above about 538). Within-unit quintile boundaries 
vary more because the number of activities available and done 
within a unit changes quite a bit and in some cases is  small 
enough to yield issues where whole number quintile cut-offs 
produce quintile groups of different sizes (e.g., in units  9-11 
where there is a median of 15, 11, and 2 activities done, more than 
40% of the students did 0 activities so there is no way to 
differentiate the first and second quintile -- all such students are in 
the 1st quintile and no students are in the second). 

In 6266 instances or 54% of the student-unit combinations, the 
within-unit activity quintile was different from the outside-unit 
activity. In 1464 instances or 13% of the cases, the quintile was 
different by two levels (a difference of more between 20-40 
percentile points). For example, of all the student-units in the 3rd 



(a)   

(b)   

Figure 1. A sample of interactive activities from the Brain Regions module of the OLI course used in the Psychology MOOC. The 
example on top (a) illustrates a machine-gradable alternative to multiple-choice with vastly more choices (8! = 40,320). The bottom 
of the figure (b) is an example of an open-ended “submit and compare” question, where students can compare their submitted 
response to an example correct response. In all OLI activities, students have immediate access to correct responses. 



Table  1. Student activity within each unit compared with their activity outside that unit. 
 Outside-Unit Activity Quintile  

Within-Unit 
Activity Quintile 

Low 2nd 3rd 4th High 
20% 20% 20% 20%  20% 

Within 
Totals 

 2244 1406 473 82 26  

57 308 135 32 11 

53 505 1176 880 598 

5 34 401 989 1080 

1 22 127 338 578 

 

 

quintile of outside-unit activity (2312 of them), there are 
473 cases (20%) where the within-unit activity is quite a bit 
lower (20- 40 percentile points) than outside-unit activity and 
127 cases (5%) where the within-unit activity is quite a bit 
higher than outside activity. In summary, we do find lots of 
cases where students chose to do many fewer or many more 
activities than they tend to do otherwise. This natural 
variability opens the door to analyzing whether within-unit 
activity is predictive of learning unit content above and 
beyond outside-unit activity. 

2.3 Results: Association of Within-Unit and 
Outside-Unit Choices with Learning 
Outcomes 
To investigate the association of within-unit and outside-unit 
choices with learning outcomes, we used mixed effect linear 
regression modeling, implemented using lmer function in R, 
an open statistical application. We aggregated log data from 
Coursera and OLI into a file with 11561 rows for the 1051 
students and each of the 11 units. The outcome or 
dependent  measure is the unit quiz score for the given student 
and unit. To derive predictor (or independent) measures we 
developed an analytic script to extract from the log data the 
number of activities started, pages accessed, and video started 

within each unit.  (Note: Doing so was no small effort, 
motivating a need for analytic script sharing that 
learnsphere.org is being designed to support.) These resource 
use counts were constrained to both be resources within the 
course content associated to that unit (i.e., a Coursera video 
within this unit’s section of the syllabus or an OLI page or 
activity within an associated OLI unit) and used before the 
student took the associated quiz. For example, a resource 
done in week 1 but associated with unit 2 that is done before 
the quiz (even if in week 1) gets counted toward unit 2, but 
that same resource done after the unit quiz 2 is not counted. 
All student resource use that is not counted as within-unit by 
the above criteria is than counted as outside-unit  (e.g., for  
unit  2  any  resource  associated  with  a different unit and 
any unit 2 resource used after the unit 2 quiz). Thus, for 
each student-unit row, we had within-unit and outside- unit 
counts for each of doing, reading, and watching. As in [7], we 
adjusted each student’s reading score to only count pages 
accessed beyond the estimated minimum needed to access 
the number of activities that student did. We also 
converted all measures to Z scores (standard deviations 
from the mean) to aid interpretation, namely, to facilitate 
direct comparison of model parameter estimates.  

 
Table 2. Within-unit and outside-unit effects of resource use on unit quiz performance. 

Learning 
method 

Location Parameter 
Estimate 

Std. 
Error 

DF t value Pr(>|t|) 

 (Intercept) -0.015 0.068 12 -0.218 0.8312 

Doing Within-unit 0.195 0.011 9969 17.475 < 0.000001 *** 

Outside-unit 0.196 0.022 1389 8.736 < 0.000001*** 

Reading Within-unit 0.015 0.009 10226 1.676 0.0937 . 

Outside-unit -0.006 0.021 1184 -0.283 0.7770 

Watching Within-unit 0.036 0.009 10244 4.174 <0.00003 *** 

Outside-unit -0.002 0.020 1215 -0.103 0.9182 

       

       

       

       

       

       

 



Shown below is the R formula we used for this analysis, 
indicating both the statistical method, a linear mixed effect 
regression (lmer), and the regression formula (variables with 
“NR”, for non-relevant, indicate the outside-unit counts): 

lmer(Z.quiz.correct ~ (1|user.name) + (1|quiz.num) + 
Z.Activities + Z.NR.Activities + 
Z.Readings + Z.NR.Readings +  
Z.Video + Z.NR.Videos, data = b_a) 

To adjust for general differences in student performance and  
unit quiz difficulty we included random effects in the model 
for both student and unit (coded as quiz.num). We report on 
analysis for the subset of registered OLI students (N = 939), 
since only OLI students have the option of doing and reading. 
All the significant results remain the same when we include all 
students. 

The key findings are shown in Table 2. There are 
significant effects of within-unit and outside-unit doing, and 
within-unit video watching. Within-unit reading is marginal. 
Outside-unit reading and outside-unit watching are not 
significant. 

We find that within-unit doing remains a large and higher 
significant predictor even after controlling for non-relevant 
choices. This result is consistent with a causal interpretation. 
Inspecting the parameter values we see, as before, a much 
larger association of doing with outcomes than watching or 
reading with outcomes. Whereas the prior whole course 
analysis [7] found about a 6 times greater effect of doing on 
outcomes than reading or watching, here we find a 13 times 
bigger effect of doing than reading and a greater than 5  
times effect of doing than video watching. 

We also see, at least for doing, a significant effect of outside-
unit resourse use. This result may indicate some third 
variable yielding both higher general doing and better 

outcomes. One possibility is that this third variable is indeed 
some general student trait -- a third variable account for the 
causing better learning, is that there are prerequisite. activity 
effect. Another possibility, consistent with doing causing 
better learning, is that there are prerequisite relationships 
between units such that doing more activities in an earlier 
unit, say unit 4, not only improves learning of that content 
but better prepares the student for better learning from a 
related subsequent unit, say unit 6. 

2.4 Results:  Might  Prerequisites Account 
for the Doer Effect for Outside-Unit Doing 
To test for  the  possibility  that the  large  outside-unit effect  
of  doing  may  be  a  consequence  of  better  learning  of 
prerequisites, we split the outside-unit counts into before-unit 
and after-unit counts. We ran a related R analysis as shown 
below (as above, the model normalizes for general student 
competence and for quiz difficulty by including random 
effects for these): 

lmer (Z. quiz.correct ~ (1|user.name) + (1|quiz.num) + 
Z.BF.act + Z.activities + Z.AF.act + 
Z.BF.reading + Z.reading + Z.AF.reading + 
Z.BF.Video + Z.Video + Z.AF.Video, data = b_a2) 

We report on results considering only units 2 to 10 in this 
before and after analysis, since resources are not available 
before unit 1 and the resources used after unit 11 are of a 
different character (most being accessed to study for the final 
exam). As above, we limited to only registered OLI students. 
All the significant results remain the same when we include 
either or both  all  students and/or all units. 

We find that the doer effect is now strongest for doing within 
the target unit as compared to doing before or after. This 
stronger effect for doing within than before or after comes

 

Table 3. Before within, after unit effects of resource use on unit quiz performance. 

Learning 
method 

 
Location 

Normalized 
Estimate 

Std. Error df t value Pr(>|t|) 

 (Intercept) 0.059 0.049 11 1.344 0.20506 

 
 

Doing 

Before 0.143 0.016 1861 8.840 < 0.00 *** 

Within 0.181 0.011 8892 16.973 < 0.00 *** 

After 0.078 0.014 3063 5.402 0.00 *** 

 
 

Reading 

Before 0.008 0.015 1635 0.579 0.56278 

Within 0.010 0.008 9233 1.224 0.22116 

After -0.013 0.012 2603 -1.028 0.30410 

 
 

Watching 

Before 0.054 0.014 2432 3.853 0.00012 *** 

Within 0.025 0.008 9463 3.123 0.00180 ** 

After 0.033 0.013 2876 2.474 0.01343 * 



 

despite there being about 1/5 as much data, namely, 1 unit of 
activity compared to 5 units on average contributing to the 
before and after counts. The effect of doing outside the target 
unit is stronger when more doing occurs before the unit 
(0.143) than after the unit (.078). This difference is 
consistent with prerequisite relationships between units. In 
other work, we are exploring how a combination of a finer 
grain analysis (estimating effects of every unit on every 
other unit) and text processing might produce a yield 
discovery or validation of prerequisite links between units. 

Interestingly, there is still a significant effect for doing after 
the target unit. This effect suggests that, in addition, to 
possible causal effects of within and before unit practice 
on improved outcomes, there may also be some general 
student trait (e.g., a conscientious doer/learner) that yields 
more practice and more learning (through some mechanism 
not captured in the observed data, such as greater mental 
effort). 

 

For watching video, the before effect is strongest, within next,   
and after. Perhaps watching the videos is important to produce  
a level of sense making that better enhances preparation for 
learning from future units. Nevertheless, we once again see 
a much stronger effect on learning of doing than reading or 
watching. In fact, the ratios are even bigger with the effect 
of doing being 18 times more than the (non-significant) 
effect of reading and 7 times more than the effect of video 
watching. 

3. TESTING THE GENERALIZATION OF 
THE DOER EFFECT TO OTHER COURSES 
To evaluate whether the doer effect generalizes to other 
courses, we analyzed data from OLI for four courses: 
Computing, Biology, Statistics, and Psychology. In the case of 
Psychology this is the same OLI content (online readings and 
interactive activities) as in the MOOC, but this data comes 
from a different student population (those enrolled in a  

 

Figure 2. Biology learn-by-doing activity supporting classical genetics learning outcomes. Such activities often involve multiple 
related steps and integrate different forms of interaction, such as the radio box multiple choice at the top and the drag-and-
drop selection at the bottom. Students get immediate feedback on their entries and can ask for hints if they are stuck.



university course rather than in a MOOC) and does not 
involve the video content found in the Coursera course. We  
evaluated how student choices to do activities and read (or at 
least access) pages were associated both with their total quiz 
scores and their course final grade. Given the similarity in 
surface characteristics between the online activities and the 
quizzes, these provide a kind of near transfer assessment of 
learning. The final grade is a more subjective and a more  
coarse measure of student learning involving more instructor 
judgment and making fewer distinctions between students as 
there are only 5 levels (A, B, C, D, or F). However, final 
grade has the benefit of assessing learning more broadly and 
serves as an intermediate (if not far) transfer assessment of 
learning. 

3.1 Method 
The University of Maryland University College (UMUC) ran a 

study to examine the effect of OLI resource materials on  
distance learning. OLI log data was collected from six courses in 
four disciplines (2 biology courses, 2 statistics courses, 1  
computing course, 1  psychology course). Demographics (e.g., 
age, race, gender) were mostly evenly distributed in all classes. 
Inclusion criteria for our analysis consisted of (1) OLI registered 
students (i.e., non-OLI class sections were excluded) and (2) only 
students who completed the course and received a final grade (i.e., 
students who withdrew, failed due to non-attendance, got an 
incomplete, etc. were excluded). 

Table 4 shows some general characteristics of the courses 
involved. They all have a high number of available interactive 
activities and readings and in all cases students tend to use a 
substantial number of them. Figure 2 shows an example of an  
interactive activity in the biology course.  

Table 4. Characteristics of course use showing substantial activity use and variation. 

 Students using 
online materials 

Activities 
available 

Activities done 
mean (stnd dev) 

Readings 
available 

Readings done 
mean (stnd dev) 

Information Systems 7739 153 52 (43.7) 151 94.4 (88.8) 

Biology 4564 544 200 (133.8) 881 571 (416.4) 

Statistics 359 428 312 (116.0) 441 688 (420.2) 

Psychology 123 687 621 (114.5) 545 510 (236.9) 

 
3.2 Results 
Figure 3 provides a scatterplot of the total pageviews (reading 
estimate) and total activities started (doing estimate) for the 
Biology course. It illustrates that while there is a positive 
association between reading and doing (R^2 = .342), there is also 
variation with some students doing more and reading less and 
others reading more and doing less. The scatterplots for the other 
courses are similar. The triangular white space on the right in the 
scatterplot illustrates that students must access a minimal number 
of pages to reach the number of activities they do. Thus, as 
mentioned above, to improve the estimate of reading we adjusted 
each student’s reading score by  subtracting this  minimum 
(computed as a ratio of the activities the student did). 

To pursue the question of whether the doer effect generalizes to 
the UMUC data, we ran regression models across the courses to 
assess how strongly student differences in resource use were 
associated with learning outcomes. These models are simpler than 
those in [7] to facilitate a uniform approach across datasets and 
because some data is not available (e.g., video watching and pre- 
test results) in most datasets. We performed two linear regressions 
for each course, one where the outcome variable was students’ 
total quiz score and another where it was their final grade 
converted to numeric score (F = 1 to A = 5). We converted 
predictor and outcome variables to Z scores as above. The R calls 
used can be summarized as follows (where the brackets [ ] 
indicate options selected in 10 separate calls): 

lm([totalQuiz.z, final_grade_in_number.z] ~ 
activities.z + non_activities_reading.z, 
data = [Statistics, Biology, IFSM, Psych, Psych MOOC]) 

 

The results are shown in Table 5. As shown, the doer effect is 
consistently observed. The standardized coefficient of the effect 
of doing on outcomes is always significant and much higher than 
the standardized coefficient of the effect of reading (not always 
significant). The ratio of the size of the doing to reading effect 
goes from 2.2 to infinity (because in one case, quiz score in 
Statistics, the reading effect is not positive) with median of 6 -- 
the same ratio we found previously! In other words, the effect of 
doing is generally about 6 times greater than the effect of reading 
across four different courses and involving over 12,500 
students. 

 
F i g u r e  3 .  Scatterplot of pageviews (reading) and activities 
started (doing) by 4564 biology students showing that many 
students do more and read less (top left) and others read 
more and do less (lower right and middle).



Table 5. Model fit, standardized coefficients, and doer effect ratio for 5 courses and 2 outcomes. 
 Quiz Final Grade 

 Adj 
R^2 

Doing 
std coef 

Reading 
std coef 

Effect 
ratio 

Adj 
R^2 

Doing 
std coef 

Reading 
std coef 

Effect 
ratio 

InfoSystems 0.49 0.642 0.124 5.2 0.08 0.227 0.105 2.2 

Biology 0.39 0.571 0.114 5.0 0.16 0.340 0.109 3.1 

Statistics 0.24 0.519 -0.127 ∞ 0.11 0.327 0.020 16.4 

Psychology 0.64 0.781 0.092 8.5 0.45 0.654 0.085 7.7 

Psy MOOC 0.25 0.467 0.069 6.8 0.08 0.259 0.054 4.8 

 

4. DISCUSSION AND CONCLUSIONS 
Determining causal relationships is important for scientific and 
practical reasons because causal relationships provide a path 
toward explanatory theory as well as reliable and replicable 
practical application: If we can be certain a learning method is 
causally related to more optimal learning, then that method should 
be used to guide course design and students should be encouraged 
to use it. There are lots of laboratory experiments of the “testing 
effect” that provide high internal validity support that, in the 
content and contexts sampled, there is a strong causal impact of 
doing on longer-term learning. The content in these studies has 
typically been facts (even arbitrary associations involving non- 
words like “zep with house” [14]) and the assessments of learning 
have typically involved delayed retrieval of those facts. Even in 
the classroom studies, the orientation has been toward facts and 
other forms of verbal expression of concepts. Given the 
importance of skills and principles in many domains and given 
other experimental results in such domains that point to less 
testing and more study [4, 6, 15], it is critical that we expand 
efforts to test the generalizability of learning by doing. One of the 
strengths of these results is that the doer effect is demonstrated 
across four different content domains (information systems, 
biology, statistics, and psychology).  One of these is in the 
humanities (psychology) but none are in the arts and it is worth 
investigating whether the doer effect is found in less well-defined 
domains, such as law or design. 

Such efforts are particularly important in the context of MOOCs 
where so much emphasis has been placed on online lecture video. 
We have identified a “doer effect”, an association between more 
doing and more learning, in data  from  multiple  online 
courses. We have also shown that this effect cannot be explained 
solely by some global student trait, a particular third variable 
alternative to a causal explanation (e.g., a motivation to both do 
and learn). Such an explanation does not predict that, for the 
same student, within-unit activity will predict learning on unit 
content above and beyond outside-unit activity. Of course, other 
third variable explanations are still possible (e.g., interest in a 
particular unit content produces more doing and more learning) 
and experimentation is warranted, especially as so-called A/B 
testing is becoming easier to do online. 

MOOC providers and online course developers should not only be 
pushing to be sure to have a large volume of activities, but to 
provide guidance and incentives to students to do them. Further, 

they should be exploring what are the best ratios of active doing to 
passive      study      through      reading      text      or      watching 
lectures? Analytics can help. We suspect that detailed online 
course data of the kind we analyzed can inform this question. In 
particular, one can investigate, for a fixed student time allocation, 
what ratio of doing to study is associated with the most learning. 
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