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Abstract. Previous studies have demonstrated the learning benefit of per-
sonalized language and worked examples. However, previous investigators
have primarily been interested in how these interventions support students
as they problem solve with no other cognitive support. We hypothesized
that personalized language added to a web-based intelligent tutor and worked
examples provided as complements to the tutor would improve student (e-
)learning. However, in a 2 x 2 factorial study, we found that personalization
and worked examples had no significant effects on learning.  On the other
hand, there was a significant difference between the pretest and posttest
across all conditions, suggesting that the online intelligent tutor present in
all conditions did make a difference in learning.  We conjecture why person-
alization and, especially, the worked examples did not have the hypothe-
sized effect in this preliminary experiment, and discuss a new study we have
begun to further investigate these effects.

1 Introduction
In a recent book by Clark and Mayer [1], a number of principles were proposed as
guidelines for building e-Learning systems.  All are supported by multiple educational
psychology and cognitive science studies.  We were especially interested in and decided
to experiment with two of the Clark and Mayer principles:

Personalization Principle One:  Use Conversational Rather than Formal Style
Worked Example Principle One: Replace Some Practice Problems with Worked Examples
In contrast to most previous studies, however, we wished to test these principles in

the context of a web-based intelligent tutoring system (ITS), rather than in a standard
e-Learning or ITS environment or, as in even earlier studies, in conjunction with
problems solved by hand.  The key difference is that an intelligent tutoring system
provides more than just problem solving practice; it also supplies students with con-



2

text-specific hints and feedback on their progress.   In particular, we were interested in
whether personalized language within an ITS and worked examples provided as com-
plements to ITS-supported problems might improve learning beyond the gains from
the ITS on its own with formal, impersonal feedback.  Furthermore, because we are
interested in delivering intelligent tutoring systems over the Internet, we were inter-
ested in whether we could show results with a web-based ITS deployed in a distance
learning environment.

Until relatively recently, providing intelligent tutoring in an e-Learning environ-
ment was quite difficult to achieve, given the implementation complexity and compu-
tational overhead of the typical ITS.  However, advances in ITS authoring tools, an
important area of ITS research [2], have started to overcome this obstacle.  For in-
stance, authoring software developed in our laboratory, the Cognitive Tutor Authoring
Tools (CTAT) [3], make it possible to deliver tutors on the web.   CTAT builds on
successful research and development of cognitive tutors, intelligent tutoring systems
that have been shown to lead to significant improvements in learning of high school
math [4] and are currently in use in over 2,000 schools across the U.S. Perhaps the
most important contribution of CTAT thus far is its support for developing example-
tracing tutors, tutors that can be rapidly built by demonstration but are constrained to
single-problem use1. On the other hand, these example-tracing tutors exhibit behavior
that is very similar to full cognitive tutors and are lightweight enough to be deployed
on the web.  Inspired by our newfound ability to rapidly deploy tutors to the web, our
general aim is to explore how we can leverage CTAT and e-Learning principles to
improve web-based learning.  

The Clark and Mayer personalization principle proposes that informal speech or
text (i.e., conversational style) is more supportive of learning than formal speech or
text in an e-Learning environment.  In other words, instructions, hints, and feedback
should employ first or second-person language (e.g., “You might want to try this”)
and should be presented informally (e.g., “Hello there, welcome to the Stoichiometry
Tutor! …”) rather than in a more formal tone (e.g., “Problems such as these are solved
in the following manner”).  

Although the personalization principle runs counter to the intuition that informa-
tion should be “efficiently delivered” and provided in a business-like manner to a
learner, it is consistent with cognitive theories of learning.  For instance, educational
research has demonstrated that people put forth a greater effort to understand informa-
tion when they feel they are in a dialogue [5].  While consumers of e-Learning content
certainly know they are interacting with a computer, and not a human, personalized
language helps to create a “dialogue” effect with the computer. E-Learning research in
support of the personalization principle is somewhat limited but at least one project
has shown positive effects [6].  Students who learned from personalized text in a bot-
any e-Learning system performed better on subsequent transfer tasks than students who
learned from more formal text in five out of five studies. Note that this project did not

                                                
1 In [3] these specialized tutors were referred as “Pseudo Tutors.”  However, we have since

renamed them more mnemonically as “example-tracing tutors.”
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explore the use of personalization in a web-based intelligent tutoring setting, as we are
doing in our work.

The Clark and Mayer worked example principle proposes that an e-Learning course
should present learners with some step-by-step solutions to problems (i.e., worked
examples) rather than having them try to solve all problems on their own.  Interest-
ingly, this principle also runs counter to many people’s intuition and even to research
that stresses the importance of “learning by doing” [7].

The theory behind worked examples is that solving problems can overload limited
working memory, while studying worked examples does not and, in fact, can help
build new knowledge [8].  The empirical evidence in support of worked examples is
more established and long standing than that of personalization.  For instance, in a
study of geometry by Paas [9], students who studied 8 worked examples and solved 4
problems worked for less time and scored higher on a posttest than students who
solved all 12 problems. In a study in the domain of probability calculation, Renkl
[10] found that students who employed more principle-based self-explanations bene-
fited more from worked examples than those who did not.  Research has also shown
that mixing worked examples and problem solving is beneficial to learning.  In a
study on LISP programming [11], it was shown that alternating between worked
examples and problem solving was more beneficial to learners than observing a group
of worked examples followed by solving a group of problems.

Previous ITS research has investigated how worked examples can be used to help
students as they problem solve [12][13].  Conati’s and VanLehn’s SE-Coach demon-
strated that an ITS can help students self-explain worked examples [14].  However,
none of this prior work explicitly studied how worked examples, presented separately
from supported problem solving as complementary learning devices, might provide
added value to learning with an ITS and avoid cognitive load [8].  Closest to our ap-
proach is that of Mathan and Koedinger [15].  They experimented with two different
versions of an Excel ITS, one that employed an expert model and one that used an
intelligent novice model, complemented by two different types of worked examples,
“active” example walkthroughs (examples in which students complete some of the
work) and “passive” examples (examples that are just watched).  The “active” example
walkthroughs led to better learning but only for the students who used the expert
model ITS.  However, a follow-up study did not replicate these results [16].  This
work, as with the other ITS research mentioned above, was not done in the context of
a web-based ITS.

2 The Hypotheses and the Stoichiometry Tutor to Test Them
Given the evidence about personalization and worked examples, our intent in the study
described in this paper was to explore the following hypotheses:

H1: The combination of personalized language and worked examples, used in
conjunction with a supported problem-solving environment (i.e., an
ITS), can improve learning in an e-Learning system.

H2: The use of personalized language in a supported problem-solving envi-
ronment can improve learning in an e-Learning system.
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H3: The use of worked examples in a supported problem-solving environ-
ment can improve learning in an e-Learning system.

We tested these hypotheses using a Stoichiometry Tutor developed with CTAT.
Stoichiometry is the basic math required to solve elementary chemistry problems and
is typically learned in the 10th or 11th grade in U.S. high schools.   Solving a
stoichiometry problem involves understanding basic chemistry concepts, such as the
mole, unit conversions, and Avogadro’s number, and applying those concepts in solv-
ing simple algebraic equations.

Figure 1: The Stoichiometry Intelligent Tutor

The Stoichiometry Tutor and an example of a typical stoichiometry problem (a
“personal” version used in the study) are shown in Figure 1.  To solve this problem
the student must first express the goal, given a problem statement and an initial value.
The student has requested a hint, which suggests that they should express the units of
the result (i.e., grams or “g,” see the highlighted cell, further indicated by the box
with an asterisk).   After providing the goal, the student must fill in the other terms of
the equation to convert the given value to the goal value.  Each term, expressed as a
ratio, is used to cancel the units and substance of previous terms.  The full solution to
the problem in Figure 1, with cancelled terms highlighted, is:

(0.58 mol AsO2- / 100 kL solution) * (1 kL solution / 1000 L solution) * (106.9 g
AsO2- / 1 mol AsO2-) = 0.00062 g AsO2- / 1 L solution

The student is also asked to provide a rationale for each term of the equation (see
the “Reason” field below each term in Figure 1).   So, for instance, the initial term in
the equation of Figure 1 is a “Given Value,” since it is provided in the problem state-
ment. Notice that the problem statement and the hint contain first- and second-person
pronouns (e.g., “Did you know the WHO recommended limit for arsenic in drinking
water is …”) instead of more formal, impersonal language (e.g., “Suppose the WHO

*
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recommended limit for arsenic in drinking water is…”). The tutor also provides con-
text-specific error messages when the student makes a mistake during problem solv-
ing.  As with the problem statement and hints, there are personal/impersonal versions
of all error messages.

The Stoichiometry Tutor was developed as an example-tracing tutor within CTAT
[3].  In particular, after the graphical user interface (GUI) of Figure 1 was created,
using the Flash programming language, problem solutions were demonstrated and all
hints and error messages were added as “annotations” to the resulting behavior graphs,
the knowledge structure that represents individual example-tracing tutor.

3 Description of the Study and Results
To test our hypotheses and the effect of personalized language and worked examples on
(e-)learning, we executed a 2 x 2 factorial design, depicted in Figure 2.  One independ-
ent variable was personalization, with one level being impersonal instruction, feed-
back, and hints and the other personal instruction, feedback, and hints.   The other
independent variable was worked examples, with one level being supported problem
solving only and the other supported problem solving and worked examples.  In the
former condition, subjects only solve problems; no worked examples are presented.  
In the latter condition, subjects alternate between observation of a worked example and
solving of a problem.  As discussed previously, this alternating technique has yielded
better learning results in prior research [11].

Impersonal Instruction,
Feedback, and Hints

Personal Instruction,
Feedback, and Hints

Supported Problem
Solving Only

Impersonal / Problem Solving
(Condition 1)

Personal / Problem Solving
(Condition 2)

Supported Problem
Solving and

Worked Examples

Impersonal Worked
(Condition 3)

Personal / Worked
(Condition 4)

Figure 2: The 2 x 2 Factorial Design
If hypothesis H1 is correct, one would expect the subjects in Condition 4 (Personal

/ Worked) to exhibit significantly larger learning gains than the other conditions, since
this is the only condition with both personalized feedback and worked examples.   To
confirm hypothesis H2, Conditions 2 and 4 should lead to significantly greater learn-
ing gains than Conditions 1 and 3 (i.e., a main effect for the personalization independ-
ent variable).   Finally, to confirm hypothesis H3, one would expect Conditions 3 and
4 to exhibit significantly greater learning gains than Conditions 1 and 2 (i.e., a main
effect for the worked examples independent variable).

The study was executed at the University of British Columbia (UBC) as an op-
tional, online activity in two courses: Intro to Chemistry for majors and Intro to
Chemistry for non-majors. Subjects were offered $20 Canadian for completing the
study.   A total of 1720 students, primarily freshmen and sophomores, were enrolled
in the chemistry-for-majors course and 226 were enrolled in the non-majors course. A
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total of 240 students started the study, and 69 fully completed it, with “completion”
defined as trying at least one step in the final posttest problem.  Subjects were ran-
domly assigned to one of the four conditions of Figure 2.

The subjects first watched a video introducing the study and explaining how to use
the web-based interface.  All subjects were then given an online pretest of nine
stoichiometry problems. The pretest (and, later, the posttest) problems were solved
using the web-based interface of Figure 1, with feedback and hints disabled.  Problems
in the pretest (and the posttest) were presented to the subjects in order of difficulty,
from relatively easy to fairly difficult.  The subjects then worked on 15 “study prob-
lems,” problems presented according to the different experimental conditions of Figure
2. All of the worked examples in the study were solved using the tutor interface, cap-
tured as a video file, and narrated by a chemistry expert. During the solving of the 15
study problems, the subjects were also presented with various instructional videos to
instruct them on stoichiometry concepts such as dimensional analysis and molecular
weight.  After completing the 15 study problems, the subjects were asked to take a
posttest of nine problems, analogous in difficulty to the pretest.

All individual steps taken by the students in the stoichiometry interface were
logged and scored as correct or incorrect.  A score between 0 and 1.0 was calculated for
each student’s pre and posttest by dividing the number of correct steps by the total
number of possibly correct steps.  On the pretest there was a possibility of 231 correct
steps; on the posttest there was a total of 222.

To test for the effects of worked examples and personalization, a 2 x 2 analysis of
variance (ANOVA) was conducted on the difference scores (i.e., post - pre)2. For this
analysis, there were two between-subjects variables: personalization (personal prob-
lems, impersonal problems) and worked examples (worked examples, problem solv-
ing).  To test for the effect of time (i.e., the overall difference between pre and post
across all conditions), a 2 x 2 x 2 repeated measure ANOVA was conducted. For this
analysis, the within-subject variable was time (pretest = time 1, posttest = time 2)3.

Prior to conducting the analyses, six subjects were deleted from the subject pool,
four due to sparse pretest and/or posttest responses (indicating they did not seriously
attempt to solve the test problems) and two because they were identified as univariate
outliers. After data screening, N was adjusted from 69 to 63 (Cond. 1 = 16; Cond. 2 =
16; Cond. 3 = 19; Cond. 4 = 12).

The independence assumption underlying the ANOVA was not violated, as each
participant was tested in only one of the two personalization conditions and in only
one of the two worked problem conditions.  A two-way ANOVA of the pretest scores
showed no significant differences between the four conditions, indicating that subjects
had been successfully randomized. Descriptive statistics indicated that the posttest
                                                
2 We also conducted 2x2 ANOVAs using four other common pre/posttest calculations (i.e.,

(1) (post – pre) / (1.0 – pre), (2) (post-pre) / pre, (3) (post – pre) / ((pre + post) /2), and
(4) If post > pre, then (post-pre) / (1.0 – pre) else, (post-pre) / pre [17]).  The results were
very similar across all analyses, so only the difference score analysis is reported here.

3 While we could have performed just a 2 x 2 x 2 ANOVA to test for the effects of all of the
independent variables, the 2 x 2 ANOVAs provide a much clearer, more intuitive depic-
tion of the effects of worked examples and personalization.
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scores were slightly skewed.  This departure from normality influences the signifi-
cance of the ANOVA results, especially with a small sample size (N= 63).  

Table 1 shows the means and standard deviations of the pretest, posttest, and the
difference scores across all conditions. Table 2 shows the result of the 2 x 2 ANOVA
on the difference scores (N = 63).  As shown in Table 2, the main effect of personal-
ization is non-significant (p= .697). The impersonal conditions performed slightly
better than the personal conditions (Mimpersonal = .1455 vs. Mpersonal = .1292). The main
effect of worked examples is also non-significant (p= .828). The worked example
conditions performed slightly better than the supported problem solving conditions
(Mworked examples = .1401 vs. Msupported problem solving = .1365).  The interaction between prob-
lem solving and personalization is also non-significant, (p= .155).
Table 1: Means & Std Dev. for Pretests, Posttests, and Difference Scores, i.e., (post–pre)

Table 2: 2 x 2 ANOVA on Difference Scores

Table 3 shows the results of the 2 x 2 x 2 ANOVA we conducted to assess the ef-
fect of time.  As can be seen, the effect of time is significant (p= .000).

Because of the indeterminate results, we decided to further explore the data.   In par-
ticular, since we suspected that a large portion of our subject pool was relatively expe-
rienced in chemistry, we divided our subjects into three groups: “novices” (18 who
scored 71% or below on the pretest), “proficient” (22 who scored greater than 71% but
less than or equal to 84%), and “expert” (23 who scored equal to or greater than 84%).
The novice group achieved the largest mean score gain from pre to posttest by a wide
margin (novice increase in mean: 29%, proficient: 12%, expert: 3%). We also ran a
two-way ANOVA on the novice group and, while there was still no significant main
effect of worked examples, the difference between the worked examples conditions and
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the supported problem solving conditions was greater than that of the population as a
whole. Taken together, these findings provide some indication that worked examples
may have had more effect on students with less expertise.

Table 3: 2 x 2 x 2 repeated measure ANOVA

Since we suspected that the lack of a worked examples main effect was due, at least
in part, to subjects not fully watching and/or processing the worked examples, we also
did an analysis of video viewing.   We found that percentage of subjects who fully
watched the worked examples started at 48% for the first worked example, but dropped,
in almost monotonic fashion, to 26% by the last worked example.  

4 Discussion of the Study Results
Our hypotheses that personalization and worked examples would improve learning
were not supported, as there were no significant main effects or a significant interac-
tion effect.  We were particularly surprised about the lack of effect from worked exam-
ples, given the substantial supporting body of research. Why might this have oc-
curred?   We have three hypotheses.  

First, the subjects in our study may have had too much stoichiometry expertise,
potentially offsetting the working memory advantage afforded by studying examples.
Previous research has shown that the more expert students are, the less they gain from
studying worked examples and the more they gain from problem solving [18].  The
students in the UBC chemistry class for majors, which likely constituted a larger
proportion of the subjects in our study, would almost surely have had stoichiometry
in high school.   In addition, because the study was optional and a small percentage of
the possible subject pool actually finished the study (< 5%), it is also likely that the
majority of the subjects who finished participated precisely because they were confi-
dent they already knew the material.  This conjecture is supported by the relatively
high pretest scores across all conditions and an optional post-study survey in which a
high percentage of the subjects claimed the material was not difficult.

Second, worked examples have been shown to be most effective when the learner
self-explains them [19] or tackles them as “completion” problems (i.e., the subject
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observes part of the solution, then completes the problem on their own, see e.g., [1],
pgs. 177-178).  Both approaches help the learner process solutions at a deeper level.
The worked example videos in our study were only observed; the subjects were not
prompted to self explain or complete them.   Also, as discussed above, a high percent-
age of subjects did not fully watch the videos. On the other hand, active processing of
worked examples did not definitively lead to better results in the Mathan studies [15];
only the subjects who used the expert model ITS showed significant learning gains by
actively processing examples and this result was not replicated in a second study.  

Third, and most intriguing with respect to worked examples employed in conjunc-
tion with intelligent tutors, it may be that the tutoring received by the subjects sim-
ply had much more effect on learning than the worked examples (or personalization).
As mentioned above, there was a significant difference between the pretest and posttest
across all conditions.  Thus, the subjects did appear to learn, but the personalization
and worked example interventions did not appear to make the difference.  Since we
didn’t directly compare supported problem solving (i.e., with tutoring) with regular
problem solving (i.e., without tutoring), we can’t definitively attribute the positive
learning effects to tutoring.  On the other hand, the analysis we did on the 18 novice
performers indicates that the worked examples may have had the desired effect on at
least that class of subjects.

Assuming the explanation of these results is not that tutoring “swamped” the ef-
fects of the other interventions, we have several hypotheses as to why personalization
did not make a difference.  First, many of our subjects may have been non-native
English speakers and thus missed the nuances of personalized English.   We did not
collect demographic information, but the UBC chemistry professor said “perhaps more
than 50% of the students were non-native English speakers.”  Second, as with worked
examples, the fact that our subjects were not novices may have made it difficult to get
an effect.  Finally, perhaps our conceptualization and implementation of personaliza-
tion was not as socially engaging as we had hoped.  In a recent study [20], Mayer and
colleagues investigated the role of politeness in the conversational style of an on-
screen tutor.  In a polite version of their system face-saving constructions were used
such as, “You could press the ENTER key”, and in the direct version, the tutor used
direct constructions such as, “Press the ENTER key.”  Students learned more with the
polite tutor, suggesting that providing an on-screen agent with social intelligence
makes a difference.   In other words, this study suggests that it is not just conversa-
tional first and second person language, such as that employed by the stoichiometry
tutor, that makes a difference, but the development of a real social relationship with
the learner.

5 Conclusions
In this, our first experiment applying Clark and Mayer’s e-Learning principles to web-
based intelligent tutoring, our results were somewhat disappointing.  None of our
three hypotheses, relating to the affordances of personalization and worked examples,
was supported.  On the other hand, we have demonstrated that web-based tutoring can
be effective, as shown by the significant learning gains across all conditions. In sum-



10

mary, because of the issues cited above, we view this as a preliminary study whose
purpose was to help us develop a workable methodology for testing the effects of
personalization and worked examples.

We are currently running a second experiment aimed at U.S. high school students,
a pool of subjects that is arguably more appropriate for our stoichiometry materials.
We have modified the worked examples, so that subjects must fully watch the videos
and correctly answer several self-explanation questions before moving on to the next
problem.  We conjecture that this will increase the effectiveness of the examples but,
as witnessed by the mixed results of the Mathan studies, it is not certain this will
make a difference.   With respect to personalization, we did not make changes to the
study problems, since we believe a more appropriate subject pool of (mostly) native
English speakers may lead to different results.

Acknowledgements: This research was conducted within the Pittsburgh Science of
Learning Center under NSF Award #0354420.
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