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Abstract. Deep analysis of domain content yields novel insights and can be 
used to produce better courses. Aspects of such analysis can be performed by 
applying AI and statistical algorithms to student data collected from educational 
technology and better cognitive models can be discovered and empirically vali-
dated in terms of more accurate predictions of student learning.  However, can 
such improved models yield improved student learning?  This paper reports po-
sitively on progress in closing this loop. We demonstrate that a tutor unit, rede-
signed based on data-driven cognitive model improvements, helped students 
reach mastery more efficiently. In particular, it produced better learning on the 
problem-decomposition planning skills that were the focus of the cognitive 
model improvements. 
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1 Introduction 

Much instruction is designed by intuition, drawing on the experiences and self-
reflections of instructional designers or subject-matter experts.  However, conscious 
access to our own knowledge is quite limited – estimated to be only about 30% of 
what we know [3]. The techniques of Cognitive Task Analysis (CTA), such as struc-
tured interviews of experts, can reveal such hidden knowledge. Furthermore, course 
redesign based on such analysis has been shown to improve student learning beyond 
that achieved by the original courses [3]. We have seen that greater levels of automa-
tion in CTA can be achieved by “mining” the log data from users of educational tech-
nology. By employing AI and statistical methods, better cognitive models have been 
discovered across multiple domains, and with student data from multiple technologies 
(intelligent tutors, online courses, games) [8]. This work is part of a related set of 
efforts to use data to discovery models of student knowledge and skill [1, 2]. One 
benefit of this data-driven approach to CTA is that it supplements human qualitative 
judgment with automated quantitative metrics that rigorously test purported cognitive 
model improvements. A critical next step is to the “close the loop” by using the im-
proved cognitive models to redesign instruction and then to compare, in a controlled 
experimental study, whether the redesign produces better student learning than the 
original. 
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Past experiments testing the benefits for student learning of CTA-based course re-
designs have had impressive results, but have typically taken a broad strokes approach 
to redesign [10; 3]. The redesigned “treatment” course usually differs from the origi-
nal “control” course in many ways not all of which are clearly attributable to cogni-
tive model improvements or to the insights obtained from CTA. One exception is a 
tightly controlled experiment within an algebra story problem symbolization tutor 
where the treatment differed from the control only in the replacement of one problem 
type (simpler story problems) with another (symbolic substitution problems) [6]. Prior 
CTA, employing the Difficulty Factors Assessment technique, had discovered the 
cognitive skills of composing symbolic expressions (e.g., if w=40x and y=800-w, 
then y=800-40x) as a particularly difficult component in learning to model story prob-
lems in algebraic symbols. The treatment was designed to isolate practice on these 
skills and led to improved learning over the control, including transfer from symbolic 
substitution to story problems [6].  

The Difficulty Factors Assessment is a paper-based predecessor of our current 
educational technology data mining techniques for CTA; and while the symbolization 
study is a nice example of closing the loop, it does not provide direct evidence that 
data mining can be leveraged to produce better student learning. That is the goal of 
the current paper. Before presenting the experiment, we first review the CTA that led 
to the recommended improvements. 

2 Using Educational Technology Data for Cognitive Task 
Analysis 

In [11], we presented a data-driven method for researchers to use data from educa-
tional technologies to identify and validate improvements in a cognitive model. For 
statistical modeling purposes, we used a simplification of a cognitive model made up 
of hypothesized components of knowledge or skills that students must acquire to be 
successful on target assessment tasks or activities.  These knowledge components 
(KCs) identify latent variables in a logistic regression model called the Additive Fac-
tors Model (AFM) [11], which is a generalization of item-response theory [12]. The 
method involves a wash-rinse-repeat iteration: 1) inspect learning curve visualizations 
and best-fitting parameters of AFM for a given set of knowledge components (a KC 
model), 2) hypothesize changes to the KC model based on identified problematic 
KCs, and 3) refit AFM with the new KC model and return to step 1. 

This method was applied to a publicly available data set from DataShop [5] called 
“Geometry Area (1996-97).”  This data was generated by students using a Cognitive 
Tutor for learning geometry. A screen shot from a newer version of the tutor can be 
seen in Fig.1. The data included 5,104 student steps completed by 59 students. Using 
the visualizations available in DataShop, we identified potential improvements to the 
best existing KC model at the time we started, called Textbook-New, had 10 KCs. 
Three of the learning curves for these KCs are shown in Fig. 2. The lines represent the 
error rate (y-axis) averaged over all students for the first 20 practice opportunities for 
each KC. Most of the KCs in this model have reasonably smooth learning curves, like 
circle-area (some roughness in the learning curve can result from noise rather than a 
bad KC and particularly so when there are fewer observations being averaged, which  
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Fig. 1. A scaffolded “composite area” problem from the original Geometry Cognitive Tutor. In 
the lower table, the student fills in all cell values except the row and column labels. The col-
umns for the areas of the metal square and the bottom of the can are given to scaffold student 
reasoning toward finding the composite area of scrap metal. These square and circle columns (2 
and 5) are absent in an unscaffolded composite area problem. 

is common at higher opportunity numbers.) The compose-by-addition curve is partic-
ularly jagged with upward blips at opportunities 12 and 15-18 where the curve jumps 
from about 25% to about 50%. Assuming there are particular problem steps that are 
more likely to occur at these opportunities (which is the case in this data set), those 
steps appear to have some knowledge demand that the other steps do not. The com-
pose-by-addition KC involves “composite area problems”, that is, problems where the 
area of a composite shape must be found by combining (adding or subtracting) the 
areas of two constituent regular shapes (e.g., what’s left when a circle is cut from a 
square). In addition to the bumpy curve, the AFM parameter estimates indicate that 
compose-by-addition has no apparent learning (the slope parameter estimate is 0), yet 
it is associated with difficult tasks (the intercept parameter is 1.04 in log-odds, corres-
ponding to a 26% error rate). The rough curve, flat slope, and non-trivial error rate are 
indications of a poorly defined KC.  

 

Fig. 2. Example learning curves where Y-axis is the error rate averaged across students (and 
KCs) and the X-axis is learning opportunities. Most curves, like the one for circle-area KC, are 
reasonably smooth and decreasing as indicated in the overall curve on the left. The curve for 
“compose-by-addition” is not smooth, with large jumps in the error rate particularly at oppor-
tunities 12 and 15. 
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A visualization of the error rates on problem steps tagged with compose-by-
addition revealed that some steps are much harder than others. These steps may  
involve additional knowledge-demands that make them harder. By inspecting the 
problem content, we found that some of the composite problems were “scaffolded” 
such that they included columns that cued students to find the component areas first 
(see the square and circle columns in Fig. 1) [4]. Other problems were “unscaffolded” 
and did not start with such columns, thus students had to pose these sub-goals them-
selves. Indeed the blips in error rate for compose-by-addition (seen in the learning 
curve in Fig. 2) correspond with a high frequency of these more difficult unscaffolded 
problems. This analysis suggested that the compose-by-addition KC was not at a fine 
enough level to accurately explain the student data and that an alternative KC decom-
position is needed. To improve the model, we split compose-by-addition into three 
KCs, one representing “compose-by-addition” with scaffolding present, a second 
where the student had to “decompose” a composite area without scaffolding, and a 
third where the student needs simply to “subtract” in order to execute a decomposi-
tion plan (formulated in a prior question within the same problem). In the new  
“DecomposeArith” KC model, the 20 steps that were previously labeled with the 
compose-by-addition KC are relabeled -- six with the new decompose KC, eight with 
the new subtract KC, and six keep the compose-by-addition KC label. The Decompo-
seArith model results in smoother, declining learning curves and, when fit with AFM, 
yields a significantly better prediction of student performance than the original.  

To further validate the hypothesized model improvements, we performed a parallel 
analysis on a second Geometry Area data set also available in DataShop called 
“Geometry Area Hampton 2005-2006 Unit 34.” The original Textbook student model 
associated with this data set had 13 KCs and when the steps for compose-by-addition 
were split into the three KCs as suggested above, a new DecomposeArith model was 
created with 15 KCs. Using AFM, we confirmed that this new model better predicts 
student data, reducing BIC (15,375 to 15,176) and root mean square error (RMSE) on 
test set fit in cross validation (.408 to .404) and thus supporting the existence of the 
new KCs.  

The next step was to use the discovered model to improve the instruction in the 
cognitive tutor unit. 

3 Redesigning the Geometry Cognitive Tutor 

An improved cognitive model can be used in multiple possible ways to redesign a 
tutor: 

1) Resequencing – position problems requiring fewer KCs before ones needing 
more  

2) Knowledge tracing – add/delete skill bars for better cognitive mastery 
3) Creating new tasks – add problems to focus practice on new KCs 
4) Changing instructional messages, feedback or hint messages 

We applied the improved model to the Geometry area unit of a high school geometry 
course. The improved model’s new KCs are related to the planning of problem  
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decomposition. We added three new skills to the tutor that differentiate unscaffolded 
decomposition, scaffolded, and simple addition/subtraction. These new skills resulted 
in changes to knowledge tracing and led to the creation of new tasks. In particular, 
students in the new version are not given credit for the difficult decomposition plan-
ning step via success on simpler scaffolded or subtraction steps, but only through 
success on unscaffolded composition steps.  

We also added new problems to better target these newly identified skills. In our first 
attempt at redesign (briefly described in [11]), we identified four types of problems: un-
scaffolded, table scaffolded, area scaffolded, and problem statement scaffolded. Table 
scaffolded problems reflect the current setup in the tutor and include columns for inter-
mediate areas (as in Fig. 1).  Unscaffolded problems remove the columns for interme-
diate areas. Area scaffolded problems give the areas of the component shapes.  Problem 
statement scaffolded problems have the same table as the unscaffolded problems but 
provide an explicit hint in the problem statement directing the student to first find the 
component areas. During the implementation of this first redesign attempt [11], we expe-
rienced some issues with the parameter settings and knowledge tracing algorithm which 
resulted in students never mastering all skills. We also found that the problem statement 
scaffolded problems did not seem to help the students learn the KCs, so we removed this 
type of problem in the next design iteration. 

More importantly, inspired by related work [6], we realized there was an opportu-
nity to better support students’ learning of the hardest skill, the decomposition plan-
ning skill that recognizes a composite area is being sought and sets sub-goals to find it 
by first finding the component areas.  We called this the “know to pose” skill and it 
always appeared with other skills on problem steps in the first redesign. The design 
challenge was to create a problem (or step) that makes visible and isolates just this 
“know to pose” skill. Our solution, shown in Fig. 3, was to ask students to come up 
with a plan to solve an unscaffolded composite area problem and recognize a correct 
description of such a plan. 

In general, changes in skills can lead to changes in the feedback and hint messages the 
tutor provides. Thus, the new problems also come with new, more focused, context-
sensitive instruction that follows directly from the cognitive model improvements.   

To implement the new tutor, we needed to set the Bayesian Knowledge Tracing pa-
rameters for the new KCs.  We set them by hand based on the available data, while 
recognizing the possibility of introducing differences between the experimental condi-
tions. Given the introduction of more KCs, we wanted to avoid students in the treat-
ment spending more time than the control, so we tried to err in the direction of more 
lenient settings (i.e., a higher initial probability of knowing a new KC). As it turned 
out, these settings were not too low as treatment students better learned decomposi-
tion skills than control students.   

We also implemented a “minimizing” problem-selection algorithm which would 
help focus student practice by selecting problems with the fewest unmastered skills. 
This new algorithm is in contrast with the standard algorithm which selects problems 
that maximize a student’s opportunity to practice unmastered skills. 
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Fig. 3. Example of new problem type to isolate the know-to-pose KC. Students need to perce-
ive the desired irregular area as being composed of areas of regular shapes and then devise a 
decomposition plan for solving for the irregular area. They do not need to execute the plan, but 
rather recognize a description of it. 

4 Experiment 

We performed an in vivo experiment comparing the redesigned tutor (“treatment”) 
with the existing tutor (“control”). The study was run with 103 students (52 control, 
51 treatment) as part of regular geometry classes in a local suburban high school in 
the Fall of 2011. Due to absenteeism, seven students did not complete the posttest and 
were excluded from our analyses leaving 96 students (48 control, 48 treatment).  

Pre- and post-test measures were paper and pencil and included two versions (A 
and B) and two orders (four forms) with 12 problems each (5 area, 6 composition, and 
1 compare - a qualitative judgment of the relative area of two related figures). The 
forms (A1, A2, B1, and B2) were randomly assigned for both pre and posttest.  For 
each version, the cover stories, constants and sequence of problems varied but the 
shapes remained the same.   

The treatment had one problem type, unscaffolded problems, that are harder than 
the table scaffolded problems used in the control and are more genuinely representa-
tive of the desired problem solving. The treatment also had two other problem types, 
area scaffolded and decomposition planning (as in Fig. 3), that are less complex, in-
volving fewer steps but better isolating the critical decomposition skills.  The inten-
tion was that these problems would more efficiently focus student learning on these 
skills, minimize distraction from and time spent on other skills, and better prepare 
students for unscaffolded problem solving practice. Thus, we hypothesized students 
would learn decomposition skills more effectively and more efficiently, that is, at a 
faster rate.   
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As shown in Fig. 4a, indeed, the treatment students mastered the required skills in 
much less time on average (20.9 minutes) than the control (28.4 minutes; see Fig. 1a). 
An ANCOVA with pre-test as a covariate found this difference to be statistically reli-
able (F (1, 93) = 4.6, p = .03) and an effect size (Cohen’s d) of .6 indicates that it is 
substantial. Interestingly, despite taking 26% less time, the treatment students solved 
more problems (14.0 per student) than control students (10.4). We discuss later the 
reasons behind the treatment’s faster completion of problems. We confirmed that all 
students mastered all knowledge components (8 in the treatment and 6 in the control) 
according to the Cognitive Tutor’s Bayesian Knowledge Tracer (pknown > .95).   

We must be cautious in using the tutor data alone to conclude that treatment stu-
dents learned at a faster rate. The mastery criteria employed by the two tutors was 
different, based on different cognitive models. The post-tests, however, were the same 
and provide a more clearly comparable assessment of student achievement and its 
transfer from the computer environment to paper. We find, indeed, that the treatment 
did just as well on the posttest (M = 86.6% correct) as the control (M = 85.5%).  An 
ANCOVA with pre-test as a covariate finds no reliable post-test difference by condi-
tion (F(1, 93) = 1.03, p=.31). The cognitive model differences in the two tutors sug-
gest we should see a different pattern of performance on the post-test, with better 
performance of the treatment on composition problems. As Fig. 4b shows we find just 
such a pattern. We performed a MANOVA with condition as a factor and two sepa-
rate post-test sub-scores, one for the decomposition problems and one for the pure 
area problems, as the dependent variables. Indeed the condition by problem-type inte-
raction apparent in Fig. 4 is significant (F (1, 94) = 4.05, p = .047).   

In fact, treatment students better performance on the composition items on the 
post-test may be underestimated in that many of the items were easier scaffolded 
composition problems. One of the problems in particular (the PIZZA problem) was an 
unscaffolded composition problem (it seeks the area after removing a circle inscribed 
in a square). We expected it to be the hardest problem on the test and indeed it was 
(pretest = 59%, average all pretest = 80%). The pre to post results are striking: the 
control shows little difference, a 5% gain (.50 to .55), whereas the treatment has an 
18% gain (.67 to .85). This difference is consistent with the hypothesis that the rede-
signed tutor enables better learning of the challenging problem decomposition skills. 

Toward better explaining the faster learning rate in the treatment, we also disag-
gregated the instructional time into time spent on composition steps versus other steps 
(e.g., finding area, entering givens, doing algebra). On average, treatment students 
spent less time on other steps (10.2 minutes) than control students (24.0 minutes).  
However, treatment students actually spent more time on composition steps (10.7 
minutes) than the control students (4.5 minutes). A MANCOVA with pretest as a 
covariate and instructional time on decompose steps and other steps as the dependent 
measures confirmed the condition by step-type interaction to be significant, F (1, 93) 
= 140, p < .0001. These time differences are largely a consequence of different num-
bers of assigned steps. In particular, treatment students did fewer other steps on aver-
age than the control (173 vs. 224) and more composition steps (40.8 vs. 29.1). These 
differences reflect the cognitive model differences in the two tutors and, in particular, 
the model-based design of problems in the treatment to efficiently isolate decomposi-
tion skills and to minimize time spent on other skills. 
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domains where LFA has achieved KC model discoveries through more automatic 
methods [8]. 

It may be tempting to conclude that “students learn what they spend time on”, but 
this simple statement is dangerously misleading. It depends critically on how we cate-
gorize student activities. All of the problems that both groups solved in this study 
were composition problems, and the control group spent more time on these problems 
overall. Thus, by the simple statement, they should have learned the decomposition 
skills better.  They did not.  A finer grained cognitive analysis of student activity tells 
a different story -- one that matches the data!  We need to categorize problem-solving 
steps, not problems, and we need to do so with respect to their cognitive demands, 
recognizing that different contexts for the same action require students to acquire 
different knowledge [13]. Our prior model discovery revealed a different skill is 
needed for unscaffolded composition steps than for scaffolded ones. 

The phrase “how we categorize student activities” is another way of saying “cogni-
tive model”. Students learn the elements (the knowledge components) of the cognitive 
model they spend time practicing. However, the structure of that model is not ob-
vious.  Knowledge components are not directly observable and most are not open to 
conscious reflection, despite our strong feelings of self-awareness of our own cogni-
tion [3]. They can, however, be inferred and discovered from student performance 
data across multiple tasks [cf., 7] via a statistical comparison of alternative categoriza-
tions, that is, of alternative cognitive models.   

Thus, it is a great opportunity for AI and Education not only in mining educational 
technology data to discover better cognitive models, but in closing the loop by rede-
signing systems based on the resulting insights and testing them toward achieving 
better student learning. 
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