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Recent research has had inconsistent results as to the utility of ensembling different approaches towards 
modeling student knowledge and skill within interactive learning environments. While work in the 2010 KDD 
Cup data set has shown benefits from ensembling, work in the Genetics Tutor has failed to show benefits. We 
hypothesize that the key factor has been data set size. We explore the potential for ensembling in a data set 
drawn from a different tutoring system, The ASSISTments Platform, which contains 15 times the number of 
responses of the Genetics Tutor data set. Within this data set, ensemble approaches were more effective than 
any single method with the best ensemble approach producing predictions of student performance 10% better 
than the best individual student knowledge model.  
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1. INTRODUCTION  
 
Over the last decades, there have been a rich variety of approaches towards assessing 
student knowledge and skill within interactive learning environments, from Overlay 
Models, to Bayes Nets, to Bayesian Knowledge Tracing [Corbett & Anderson, 1995], to 
models based on Item-Response Theory such as Performance Factors Analysis (PFA) [cf. 
Pavlik et al, 2009b]. Multiple variants within each of these paradigms have also been 
created – for instance, within Bayesian Knowledge Tracing (BKT), BKT models can be 
fit using curve-fitting [Corbett & Anderson, 1995], expectation maximization (EM) [cf. 
Chang et al, 2006; Pardos & Heffernan, 2010a], dirichlet priors on EM [Rai et al, 2009], 
grid search/brute force [cf. Baker et al, 2010; Pardos & Hefferenan, 2010b], and BKT has 
been extended with contextualization of guess and slip [cf. Baker et al, 2008; Baker et al, 
2010] and student priors [Pardos & Heffernan, 2010a; Pardos & Heffernan, 2010b].  

Recent work has asked whether assessment of student knowledge and skill can be 
made more precise by the use of ensemble selection methods [cf. Caruana & Niculescu-
Mizil, 2004] that integrate across several existing paradigms for student assessment. In 
the KDD2010 student modeling competition, teams competed to predict future data on 
students using Cognitive Tutors [Koedinger & Corbett, 2006], training on earlier data 
from the same students. Two successful entries in this competition used ensemble 
selection methods, including the winning entry [Yu et al., 2010], which ensembled across 
multiple classification algorithms, and the second-best student entry [Pardos & 
Heffernan, in press], which ensembled across multiple paradigms for student assessment. 
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However, the structure of the training and test sets used in this competition was not 
representative of common conditions in student modeling, where it is necessary to train 
models one on cohort of students and apply the models on a new cohort of students (such 
as the next cohort of students to use the learning system).  

In further work to study ensembling in Cognitive Tutor data, ensembles of classic 
student modeling approaches, when conducted at the student level, failed to achieve 
substantial improvements on the best individual models in predicting future within-
software performance by new students [Baker et al., in press], or future post-test 
performance by new students [Pardos et al., in press]. However, these studies had two 
potentially key limitations: First, these studies used only simple methods for ensemble 
selection, restricting themselves to linear and logistic regression methods. Second, these 
studies were conducted in a relatively small data set, with only 23,706 student actions 
across 76 students. Although student models are often trained with data sets of this size, it 
is possible that ensemble selection methods may need larger data sets to succeed in this 
domain. In addition, the classic student modeling methods which were ensembled tend to 
produce similar predictions [Baker et al., in press], suggesting that ensemble selection 
may have failed due to having relatively little difference between predictors to leverage. 

In the study published here, we attempt to discover which of these factors may have 
led to ensemble selection failing in this case by replicating the previous analysis with two 
differences: a substantially larger data set, and by using a substantially broader set of 
ensemble selection algorithms. By doing so, we can better understand the potential of 
ensemble selection to improve the precision of student models of knowledge and skills.  

2. STUDENT MODELS USED 

2.1 Bayesian Knowledge-Tracing 

Corbett & Anderson’s [1995] Bayesian Knowledge Tracing model is one of the most 
popular methods for estimating students’ knowledge. It underlies the Cognitive Mastery 
Learning algorithm used in Cognitive Tutors for Algebra, Geometry, Genetics, and other 
domains [Koedinger and Corbett, 2006].  

The canonical Bayesian Knowledge Tracing (BKT) model assumes a two-state 
learning model: for each skill/knowledge component the student is either in the learned 
state or the unlearned state. At each opportunity to apply that skill, regardless of their 
performance, the student may make the transition from the unlearned to the learned state 
with learning probability P T . The probability of a student going from the learned state 
to the unlearned state (i.e. forgetting a skill) is fixed at zero. A  
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student who knows a skill can either give a correct performance, or slip and give an 
incorrect answer with probability  . Similarly, a student who does not know the skill 
may guess the correct response with probability  . The model has another parameter, 

, which is the probability of a student knowing the skill from the start. After each 



  
 
opportunity to apply the rule, the system updates its estimate of student’s knowledge 
state, , using the evidence from the current action’s correctness and the probability 
of learning. 

The four parameters of BKT, (P L , P T , P S , and P G , are learned from existing 
data, historically using curve-fitting [Corbett], but more recently using expectation 
maximization (BKT-EM) [Corbett et al. 2010] or brute force/grid search (BKT-BF) [cf. 
Baker et al. 2010; Pardos & Heffernan, 2010a]. Within this paper we use BKT-EM and 
BKT-BF as two different models in this study. Within BKT-BF, for each of the 4 
parameters all potential values at a grain-size of 0.01 are tried across all the students (for 
e.g.: 0.01 0.01 0.01 0.01, 0.01 0.01 0.01 0.02, 0.01 0.01 0.01 0.03…… 0.99 0.99 0.3 0.1). 
The sum of squared residuals (SSR) is minimized. For BKT-BF, the values for Guess and 
Slip are bounded in order to avoid the “model degeneracy” problems that arise when 
performance parameter estimates rise above 0.5 [Baker et al. 2008]. For BKT-EM the 
parameters were unbounded and initial parameters were set to a P G  of 0.14, P S  of 
0.09, P L  of 0.50, and P T  of 0.14, a set of parameters previously found to be the 
average parameter values across all skills in modeling work conducted within a different 
tutoring system. 

In addition, we include three other variants on BKT.  The first variant changes the 
data set used during fitting. BKT parameters are typically fit to all available students’ 
performance data for a skill. It has been argued that if fitting is conducted using only the 
most recent student performance data, more accurate future performance prediction can 
be achieved than when fitting the model with all of the data [Pardos & Heffernan, in 
press].  In this study, we included a BKT model trained only on a maximum of the 15 
most recent student responses on the current skill, BKT-Less Data. 

The second variant, the BKT-CGS (Contextual Guess and Slip) model, is an 
extension of BKT [Baker et al. 2008]. In this approach, Guess and Slip probabilities are 
no longer estimated for each skill; instead, they are computed each time a student 
attempts to answer a new problem step, based on machine-learned models of guess and 
slip response properties in context (for instance, longer responses and help requests are 
less likely to be slips). The same approach as in [Baker et al. 2008] is used to create the 
model, where 1) a four-parameter BKT model is obtained (in this case BKT-BF), 2) the 
four-parameter model is used to generate labels of the probability of slipping and 
guessing for each action within the data set, 3) machine learning is used to fit models 
predicting these labels, 4) the machine-learned models of guess and slip are substituted 
into Bayesian Knowledge Tracing in lieu of skill-by-skill labels for guess and slip, and 
finally 5) parameters for P(T) and P L  are fit.  

Recent research has suggested that the average Contextual Slip values from this 
model, combined in linear regression with standard BKT, improves prediction of post-
test performance compared to BKT alone [Baker et al. 2010]. Hence, we include average 
Contextual Slip so far as an additional potential model.  

The third BKT variant, the BKT-PPS (Prior Per Student) model [Pardos & Heffernan, 
2010a], breaks from the standard BKT assumption that each student has the same 
incoming knowledge, P L . This individualization is accomplished by modifying the 
prior parameter for each student with the addition of a single node and arc to the standard 
BKT model. The model can be simplified to only model two different student knowledge 
priors, a high and a low prior. No pre-test needs to be administered to determine which 
prior the student belongs to; instead their first response is used. If a student answers their 
first question of the skill incorrectly they are assumed to be in the low prior group. If they 
answer correctly, they assumed to be in the high prior group. The prior of each group can 
be learned or it can be set ad-hoc. The intuition behind the ad-hoc high prior, conditioned 



 

 
 

upon first response, is that it should be roughly 1 minus the probability of guess. 
Similarly, the low prior should be equivalent to the probability of slip. Using PPS with a 
low prior value of 0.10 and a high value of 0.85 has been shown to lead to improved 
accuracy at predicting student performance [Pardos & Heffernan, in press].  

2.2 Performance Factors Analysis 

Performance Factors Analysis (PFA) [Pavlik et al. 2009a; 2009b] is a logistic regression 
model, an elaboration of the Rasch model from Item Response Theory. PFA predicts 
student correctness based on the student’s number of prior failures  on that skill 
(weighted by a parameter fit for each skill) and the student’s number of prior successes 

 on that skill (weighted by a parameter fit for each skill). An overall difficulty 
parameter  is also fit for each skill [Pavlik et al. 2009b] or each item [Pavlik et al. 
2009a] – in this paper we use the variant of PFA that fits  for each skill. The PFA 
equation is: 
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2.3 CFAR 

CFAR, which stands for “Correct First Attempt Rate”, is an extremely simple algorithm 
for predicting student knowledge and future performance, utilized by the winners of the 
educational data KDD Cup in 2010 [Yu et al. 2010]. The prediction of student 
performance on a given skill is the student’s average correctness on that skill, up until the 
current point.  

3. ENSEMEBLE METHODS 

We use 5 fold cross-validation to evaluate the ensemble methods and we compute A' 
(also called AUC, the Area under the Receiver-Operating Curve) [Hanley & McNeil, 
1982] between the predictions obtained from the models and the correctness of each 
student action as the goodness metric. The individual student model predictions were 
ensembled using the following methods. 

3.1 Straightforward Averaging 

In straightforward averaging, each of the individual models’ predictions is averaged for 
each first attempt at each problem step.  

3.2 Regression 

We use linear, logistic and stepwise regression methods to ensemble the individual 
student model predictions. Linear and logistic regression models were developed without 
feature selection (e.g. ensembles included all the student models). Another variant of 
regression we use is stepwise regression. In stepwise regression, the best single-
parameter model (in terms of RMSE) is chosen, and then the parameter that most 
improves the model is repeatedly added, until no more parameters can be added which 
improve the model.  

3.3 Ada Boost 

Ada Boost is an adaptive boosting algorithm [Freund and Schapire, 1996]. This algorithm 
uses the same data set over and over, focusing on improving prediction for incorrectly 



  
 
classified data. In this analysis we use two base learners: J48 and Decision Stumps, and 
use the default settings for the AdaBoost algorithm in RapidMiner [Mierswa et al. 2006] 

3.4 Neural Network 

In developing the neural net ensemble model, we train the neural nets by varying the size 
of the hidden layer {10, 25, 50, 100, and 125} and choose default setting for other 
parameters for Neural Net in RapidMiner version 4.6 [Mierswa et al. 2006]. We use 5-
fold cross-validation to evaluate the model. During the training phase of each fold, we 
split the training data into 2 sub-folds and then train the neural nets with different sizes on 
one sub-fold and use the test sub-fold to select the best hidden layer size. After selecting 
the best size, we train the neural net on whole training set and apply the model on the test 
fold. We follow the same procedure during all the 5 folds. 

3.5 Random Forest  

Also referred to as bagged random decision trees, Random Forests [Brieman 2001] is an 
ensemble algorithm that trains many decision trees, each tree using a random resampling 
of the data (with replacement) and random sampling of the features of the data. In our 
case the features of the data comprise of predictions from the eight knowledge models. 
When making a prediction, each tree predicts the probability of a correct response and the 
average of the votes is taken as the final prediction of the Random Forest. We used 200 
trees in the training of our Random Forests with a default feature sampling of 1/3rd and 
minimum data points per tree leaf of 5. The number of trees was increased from 50 used 
in previous work [Baker et al. in press] due to the increased size of this dataset from the 
previous dataset.  

4. ASSISTMENT DATASET 

Our dataset comes from student use of the ASSISTments Plaform during the 2005-2006 
school year. The students were from 7th and 8th grade Geometry and Algebra classes with 
ages 12-14. Classes came from different schools and the teachers of the classes would 
take students to the computer lab to answer questions on ASSISTments about once every 
two weeks throughout the school year. There were 178,434 total student actions in this 
dataset produced by 5,422 students. Students received a random selection of math 
problems from varying skills based on previously released state test items.  

The knowledge models used in this paper require problems to be associated with a 
particular skill. The ASSISTments Platform created a skill model [Razzaq et al. 2007] of 
106 skills that provided this association. Some problems were tagged with more than one 
skill. Since the knowledge models that were used assume a single skill association, these 
problems were replicated in the dataset for each skill they were associated with such that 
if a problem was associated with three skills, each student response to that problem 
would show up three times, once in each of the three skill data files that were created for 
the models. 

 

5. EVALUATION OF MODELS 

5.1 In-tutor Performance of Models, at Student Level 
 

We evaluate both student models and ensemble models using 5-fold cross-validation, 
at the student level. We balance the students in each of the folds to have equal number of 
actions and to have equal percent correct. By cross-validating at the student level rather 
than the action level, we can have greater confidence that the resultant models will 



 

 
 

 
Fig 1. An Example of an ASSISTment item. 

 

generalize to new groups of students. We compute the A' (also called AUC, the Area 
under the ROC) between the predictions obtained from the models and the correctness of 
each student first attempt on a problem step. We use A' as the goodness metric since it is 
a suitable metric to be used when predicted variable is binary and the predictions are 
numerical (predictions of knowledge for each model). To facilitate statistical comparison 
of A' without violating statistical independence, A' values were calculated for each 
student separately and then averaged across students (see [Baker, et. al. 2010] for more 
detail on this statistical method).  

The average A' values are summarized in Table I. The best ensemble model was 
Neural Net (A'=0.7719) and the best individual student model was PFA (A' =0.6994). 
Neural Net achieved statistically significantly higher performance than PFA, Z=27.21, 
p<0.001, indicating that the best ensembling methods performed substantially better than 
the best individual model. Unlike the previous results in the Genetics Tutor [Baker et al, 
in press] the ensemble models generally appeared to outperform the individual student 
models, except for Ada Boost with Decision stumps (A'=0.6840) which performed 
comparably to PFA and the BKT variants, and Averaging (A'=0.6616) which was 
significantly outperformed by PFA and most of the BKT variants (the smallest difference 
in terms of statistical significance was between Averaging and BKT-BF, Z=2.18,  



  
 

Table I. A' values averaged across students for each of the models 

Model Average A' 

En-NeuralNet 0.7719 

En-RandomForest 0.7662 

En-AdaBoost-J48 0.7495 

En-Logit 0.7162 

En-LinReg 0.7129 

En-StepWiseReg 0.7124 

PFA 0.6994 

En-AdaBoost-DecisionStumps 0.6840 

BKT-EM 0.6817 

BKT-LessData 0.6816 

BKT-BF 0.6649 

En-Average 0.6616 

BKT-PPS 0.6548 

CGS 0.6464 

Cslip 0.5103 

CFAR 0.5092 
 
p=0.03). The worst single model was CFAR (A'=0.5092), and the second-worst single 
model was Contextual Slip (A'=0.5103). All the other models achieved statistically 
significantly higher performance than CFAR and Contextual Slip at p<0.001. 

5.2 In-tutor Performance of Models at Action Level  

In this evaluation method, the prediction ability of different models is compared based on 
how well each model predicts each first attempt at each problem step in the data set, 
instead of averaging within students and then across students. This is a more 
straightforward approach, although it has multiple limitations: it is less powerful for 
identifying individual students’ learning, less usable in statistical analyses (analyses 
conducted at this level violate statistical independence assumptions [cf. Baker et al. 
2010]), and may bias in favor of predicting students who contribute more data. 

Note that we do not re-fit the models in this section; we simply re-analyze the models 
with a different goodness metric. When we do so, we obtain the results shown in Table II. 
For this estimation method, the models follow the same pattern as the previous section. 
The ensemble models again outperform the individual models. The best ensemble model 
is again Neural Net (A'=0.7693), which is substantially better than best individual model, 
which is again PFA (A'=0.7053). As in the previous estimation method, the ensemble 
models again generally perform better than individual models.  

 

 

 



 

 
 

Table II. A' computed at the action level for each of the models 

Model 
A' (calculated for the 

whole dataset) 

En-NeuralNet 0.7693 

En-RandomForest 0.7651 

En-AdaBoost-J48 0.7362 

En-Logit 0.7183 

En-StepWiseReg 0.7182 

En-LinReg 0.7182 

PFA 0.7053 

BKT-LessData 0.7011 

BKT-EM 0.7011 

BKT-BF 0.6981 

En-Average 0.6977 

En-AdaBoost-DecisionStumps 0.6804 

BKT-PPS 0.6716 

Cslip 0.6148 

CGS 0.6104 

CFAR 0.6067 
 

6. DISCUSSION AND CONCLUSIONS 

Within this paper, we have analyzed the effectiveness of a range of approaches for 
ensembling multiple student knowledge models at the action level, within intelligent 
tutoring system data. We compare ensembling approaches to the best individual student 
models of student knowledge. We have compared these models in terms of their power to 
predict student behavior with in the tutor (cross-validated) and evaluated them at the 
student and action level. We have found that with this ASSISTments dataset, ensemble 
methods were unambiguously successful at predicting student performance with greater 
accuracy than single models. This is contrary to our previous finding [Pardos et al., in 
press] with a different tutor’s dataset, where we found that ensemble methods showed 
improvement in prediction accuracy compared to single models when evaluated at the 
action level, but did not show improvement when evaluated at the student level. Also, in 
that analysis, even at the action level, there was only a 1.4% improvement from the best 
single model to the best ensemble model. In this current work, we find an 8.3% 
improvement in prediction accuracy.  

Within [Pardos et al., 2011], we hypothesized that there were three possible 
explanations for the observed lack of improvement using ensemble selection: 1) the 
knowledge models were too similar to each other; 2) differing number of student 
responses and different items between the training and test sets led to reduced 
generalizability; 3) the data set was too small for ensemble selection to be effective in 
this domain. Since the first two attributes are still true in the ASSISTments data set, we 
conclude that the size of the data set is the key difference leading to greater success in the 



  
 
current study than in that previous study.  It is worth noting, in addition, that the more 
sophisticated ensemble methods used in the current paper (Neural Networks, Adaboost 
and Random Forest) also proved substantially more effective than the simple regression-
based ensemble selection methods employed in previous work [Pardos et al. in press]. 

Another contribution of this work is showing the relative predictive performance of 
the dominant knowledge models in the field on another data set. Within this data set, PFA 
was the best single model followed by the BKT models and then CGS, CSlip and CFAR. 
It is worth noting that while BKT-PPS was the best model in the Pardos paper, it is the 
worst model among the BKT models in this work. PFA was also below all BKT models 
in [Pardos et al., in press]. In general, the relative performance of different student 
models has been quite unstable between studies. This finding across studies suggests that 
there is currently no best model; relative model performance appears to be dependent on 
the data set. It is not yet clear what features of a specific data set (and the tutor it comes 
from) are associated with better or worse performance for specific types of student 
models. This reinforces the motivation behind ensembling models instead of choosing a 
single model.  

Overall this paper demonstrates that ensemble methods can be effective at 
substantially improving student performance prediction in an ITS, given sufficient 
amounts of data. It is not yet known exactly how much data is needed  in this domain for 
ensemble selection methods to be effective – for future work, it may be valuable to obtain 
samples of different sizes from a data set, and test the accuracy of the ensemble for 
various sample sizes. An additional open research question is whether an ensemble 
trained on one year’s cohort of students will be effective at predicting the next year’s 
cohort. This would be a more rigorous test of ensemble methods in ITS.  
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