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In this paper we introduce a method of predicting student performance by simply calculating the expected 
outcome of students with the same sequence or subsequence of responses. This expected outcome, which is 

simply the percent correct, can be calculated for each response subsequence. The combination of expected 

outcomes for each subsequence can then be combined for a final prediction of a particular student response. 

Using skill builder problem sets from the ASSISTments Platform we tested this algorithm against an established 

model of learning called Knowledge Tracing. Both methods utilized the same data which was only student 

response data. We found that the Tabling method slightly exceeded knowledge tracing in prediction accuracy. 
The tabling method training time was minimal, taking only a few seconds to train compared to the 30 minute 

training time of knowledge tracing. We believe this work offers a valuable alternative to knowledge tracing for 

use with prediction tasks when information about student learning or knowledge is not required. 
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1. INTRODUCTION  
Intelligent Tutoring Systems (ITS) aim to improve student learning using reliable 

assessment, while providing students and teachers immediate feedback on student 

performance. The fine-grained data produced by these tutoring systems provide an 

opportunity to model student behavior using various methods. One of the most proven 

and accepted methods in the ITS field is Knowledge Tracing (Corbett & Anderson 1995) 

which uses a Dynamic Bayesian Network to track student knowledge. Knowledge tracing 

provides both the ability to predict future student response values, as well as providing an 

addition parameter: the probability of student knowledge. For this reason, KT provides 

insight that makes it useful beyond the scope of simple response prediction. However, 

KT can be computationally expensive. Model fitting procedures, which are used to train 

KT, can take hours or days to run on large datasets (Ritter et al. 2009; Bahador & Pardos 

2011;Pardos & Heffernan in press). Is this extra computation necessary or can 

performance be as effectively predicted by calculating simple percent correct features of 

past response data? This approach was shown to be effective when based on past hint 

count and response time information [Wang & Heffernan 2011]. We propose an 

alternative to KT that matches KT‟s predictive accuracy with minimal computational 

cost. We suggest that if the task at hand is strictly prediction such as predicting end of 

year student outcomes or within tutor responses (KDD Cup), our simple tabling model, 

which ensembles percent correct response predictions, offers a fast and effective solution. 

 

2. DATASET DESCRIPTION 
The dataset used in this paper came from the ASSISTments Platform, a web-based 

tutoring system developed at Worcester Polytechnic Institute and used with 4th to 10th 

grade math students. The responses are all taken from Skill Building problem sets worked 

on by students in a suburban middle school in central Massachusetts during the 2009-
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2010 school year. Skill Building is a special type of problem set, where students are 

presented with problems from a large pool of problems from a single skill. The student 

completes problems until he either answers 3 questions correct on the first attempt in a 

row or completes 10 questions in a given day without getting 3 questions correct in a 

row, in which case he has “exceeded his daily limit” and must return on a different day. 

Teachers are also able to change the number of correct problems the student must 

complete in a row as well as the daily limit. For most of our data the number correct in a 

row was set to either 3 or 5 but a few teachers set this to as many as 15. 

The dataset we used includes student responses from 14 different skill types which 

are each separated into their own dataset. The skills had an average of 800 student 

responses per skill. Each data point describes whether the student answered correctly or 

incorrectly on their first attempt of the question. In each skill, we split the student 

responses into 5 groups in order to run 5-fold cross validation by student. We trained our 

table model and a KT model on data from 4 of the folds, and then tested the prediction 

accuracy of our models on the fifth fold. We did this for all 5 folds. The final results 

reported are combined from all 5 test folds. 

Table 1 shows example rows from our dataset. 

Table 1: Example Skill Building Data 

Student Skill Response Sequence 

Student A Integer Addition ‘0 1 0 1 1 1’ 
Student B Integer Addition ‘1 1 1’ 
Student C Integer Addition ‘0 0 0 1 0 1 1 1’ 
Student A Integer Subtraction ‘0 1 1 1’ 
Student D Integer Subtraction ‘0 0 0 0 1 1 1’ 

…   

 

3. KNOWLEDGE TRACING MODEL DESCRIPTION 

 

Figure 1: Knowledge Tracing Model 

The Knowledge Tracing model has been widely used with ITS to model student 

knowledge and performance. As shown in Fig 1, Knowledge tracing is a typical 2-

variable Hidden Markov Model, with one latent and one observable. There are 4 

parameters for each skill. The transmission parameters are comprised of the probability 

that the student knows the skill before starting, P(L0), and the probability of learning the 



  
 

skill from one problem to the next, P(Knowledget+1=T | Knowledget=F) or P(T). The 

emission parameters are the probability of answering correctly while the student doesn't 

know the skill, “guessing” P(G), and the probability of answering incorrectly when the 

student does know the skill, “slip” P(S), which can be described as 

P(Performancet|Knowledget). 

In our experiments, we used the Bayes Net Toolbox for Student Modeling (Chang, 

Beck, Mostow & Corbett 2006) to implement Knowledge Tracing which employs 

expectation maximization (EM) to fit the model parameters to the training data. We set 

the initial parameters as follow: initial knowledge: P(L0)= 0.50; guess P(G) = 0.14; slip: 

P(S) = 0.09; learning: P(T) = 0.14, which are found to be the average parameter values 

across all skills in previous modeling work conducted using ASSISTments.  

 

 

4. TABLING MODEL DESCRIPTION 
The tabling method evolved out of the simple intuition that common student response 

sequences may repeat themselves. That is, that overall percent correctness on a problem 

given a particular past response sequence can predict future performance of other 

students given the same response sequence. To generalize this idea we take a sequence of 

correct and incorrect responses, and look at the percentage of correct responses on the 

next problem. For example, say Student A has answered ‘0 1 1’ (0 = incorrect, 1 = 

correct). We will look at all sequences of student responses that match ‘0 1 1’, observing 

the response that follows this sequence. So, if 72% of student responses that are preceded 

by ‘0 1 1’ are correct, then we can predict 0.72 for Student A‟s next response. We 

describe this prediction as the probability of a correct response given a preceding 

sequence of ‘0 1 1’, or P(x=1 | ‘0 1 1’) = .72. Our model becomes a simple table that 

maps sequences of preceding responses to the percent correct of the follow-up response. 

We input a sequence of student responses to the table, and use the percent correct from 

the row corresponding to that sequence as a prediction for the student‟s next response. 

4.1 TRAINING THE TABLE 
For each skill we train one table. The table has a row for each distinct sequence of 

preceding responses. To best inform our predictions, we used 5 different sequence 

lengths, observing 0 through 4 previous responses. The rows are labeled:  „ ‟, „0‟, „1‟, „0 

0‟, „0 1‟, „1 0‟, „1 1‟, „000‟, etc. There are a total of 31 rows in each table (1 of length 0, 2 

of length 1, 4 of length 2, 8 of length 3, and 16 of length 4). For each row in the table, we 

record how many instances of this response there are, as well as the number of correct 

and incorrect responses that follow the sequence. We use these numbers to then calculate 

the percent correct of next responses. 

To maximize the number of data points used in training the model, we attempt to use 

each response of all the students trained against each different sequence length. That is to 

say for each student‟s first response, we can only train using an empty preceding 

sequence. For students‟ second responses, we can train the empty sequence row as well 

as the 1-response sequence rows. Table 2 illustrates how the training works, by showing 

the results of training a table using only one student‟s response of ‘0 1 0 1 1’. 



 

 
 

Table 2: Example for a single student with responses of “01011” for training 

 

Sequence 

Size 
Sequence 

Sequence 

instances 

#  of next 

response 

Correct 

# of next 

response 

Incorrect 

Percent 

Correct 

0 „ „ 
5 

 
3 2 0.6 

1 

„0‟ 
2 

[01011], 
[01011] 

2 0 1.0 

„1‟ 
2 

[01011], 

[01011] 
1 1 0.5 

2 

„0 0‟ 0 0 0 undefined 

„0 1‟ 
2 

[01011], 
[01011] 

1 1 0.5 

„1 0‟ 1 
[01011] 

1 0 1 .0 

„1 1‟ 0 0 0 undefined 
 

…     

 

 

 The first row of the table shows that given no prior information, all we can do is 

count the number of correct responses to calculate the percent correct. In the second row, 

where the preceding sequence is ‘0’, we see that there are two instances of a ‘0’ sequence 

in the response ‘0 1 0 1 1’. Since the response after the ‘0’ is ‘1’ in both cases, we record 

a percent correct of 1.0 for that sequence. We continue this process until we have covered 

all sequence sizes, and all possible sequence combinations. By counting the number of 

sequence instances in the table, we see that this single sequence of 5 responses provides 

our table model with 15 data points. 

 We counted responses in this manner for every student response in each skill, which 

leaves us with a table like Table 3, which shows a fully trained table for one of our skills. 
 

Table 3: Fully trained table for sequence lengths 0-3 

Sequence 

Size 
Sequence 

#  of next 

response 

Correct 

# of next 

response 

Incorrect 

Percent 

Correct 

Corresponding 

prediction from 

KT 

0 „ „ 606 908 0.6674 0.5085 

1 
„0‟ 136 255 0.5333 0.2996 

„1‟ 217 270 0.8037 0.7445 

2 

„0 0‟ 42 95 0.4421 0.2349 

„1 0‟ 27 44 0.6136 0.4451 

„0 1‟ 91 119 0.7647 0.5717 

„1 1‟ 110 131 0.8397 0.8864 



  
 

 

„0 0 0‟ 12 40 0.3000 0.2205 

„1 0 0‟ 8 10 0.8000 0.2762 

„0 1 0‟ 14 23 0.6087 0.3278 

„1 1 0‟ 13 17 0.7647 0.6398 

„0 0 1‟ 22 37 0.5946 0.5050 

„1 0 1‟ 14 15 0.9333 0.6978 

„0 1 1‟ 64 79 0.8101 0.7870 

„1 1 1‟ 31 37 0.8378 0.9535 

 …     

 

 

4.2 MAKING PREDICTIONS 
To test the predictive power of our tabling method, we made predictions for every student 

response in the test data set. For each response, we used the preceding 4 responses as 

evidence (or fewer if 4 did not exist such as when predicting the first four responses), and 

made a prediction. Figure 2 outlines the full prediction process for a single student‟s 

response. 
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Figure 2: Test Data Prediction Process 

 

First, we would create up to 5 different evidence sequences based on the student‟s 

preceding responses. Then, we would look up each of the 5 sequences in the trained table, 

yielding 5 different percent correct values. We then took these 5 prediction values, and 

combined them to come up with a prediction of correctness based on the student‟s 

preceding responses. For the combination step of the process, we did a simple average of 

our table‟s predictions. 

 



 

 
 

4.3 TABLING RESULTS COMPARED WITH KNOWLEDGE TRACING 
Table 4 shows RMSE values for our two models predicting student responses on our test 

data. The table also shows p values from a paired T-Test of each prediction, as well as a 

T-Test of the squares of the residuals. We found an RMSE of 0.4414 for our tabling 

model, which is reliably better than the Knowledge Tracing model for this dataset. 

 

Table 4: RMSE of our two models 

 RMSE 

Paired TTest 

Compared to 

KT 

Paired TTest on 

Residual Squared 

Compared with KT 

KT 0.4534 - - 

Tabling 0.4414 p << 0.01 p << 0.01 

 

 

5. ENSEMBLING TABLE PREDCITIONS WITH KNOWLEDGE TRACING 
We had the intuition that since our tabling model is so different from the Knowledge 

Tracing approach, there would be a potential improvement from combining our results 

from tabling with the predictions from our KT model. The tabling model takes only the 

previous four responses into account when predicting, and makes a simple mapping of 

response sequences to percent correct, whereas Knowledge Tracing can use a longer 

sequence of responses and models the student‟s probability of knowledge while also 

making predictions. We hoped that the strengths of the two methods could be ensemble 

into more accurate prediction. 

We combined our results in two ways. We first tried taking the simple average of the 

tabling model‟s prediction and KT‟s prediction for each response. We refer to the second 

method in the results as “Average-Min-Max”, shown in equation 1, motivated by the 

thought that for each prediction, we would use the model that gave the most definitive 

response. That is to say, if both predictions were above 0.5, we chose the higher of the 

two. If both were below 0.5 we chose the lower prediction. If one prediction was above 

our threshold and the other was below, we chose the average of the two predictions. 
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Equation 1: "Average Min Max" ensembling method 

 

 



  
 

5.1 ENSEMBLING RESULTS 
After ensembling our predictions, we found that taking a simple average gave us a 

significant improvement in RMSE, while using our AverageMinMax technique gave no 

reliable improvement. 

Table 5: RMSE of our ensembled predictions 

 RMSE 

Paired TTest 

Compared to 

KT 

Paired TTest on 

Residual Squared 

Compared with KT 

KT 0.4534 - - 

Tabling 0.4414 p << 0.01 p << 0.01 

Simple Average 0.4391 p << 0.01 p << 0.01 

AverageMinMax 0.4438 p << 0.01 p << 0.01 

6. RESIDUAL ANALYSIS 
We wanted to learn more about exactly how our table model was performing better than 

KT. We decided to track residuals and RMSE on a per opportunity basis. Figures 3 and 4 

show the two graphs for the first 10 student responses. It should be noted that the 

majority of our student response sequences are 5 or 6 responses long. The behavior of the 

graphs from 7-10 is based on fewer data points than the rest of the graph. 

 

 

Figure 3: Average Residual Analysis 

It is interesting to note from the residual graph in Figure 3 that KT is underpredicting 

early in the response sequence. Our intuition is that KT is more conservative in its 

likelyhood of learning increases, and takes a few responses before it can confidently 

predict correctness. On the other hand, in the later responses of the residual graph, you 

can see that KT is over predicting, being overly convinced that the student has learned the 

skill, when he still may be answering questions incorrectly. This fits with our intuition 

that tabling, which has no concept of a predecided learning curve, would be resistant to 

drastic over or underpredictions.  



 

 
 

 

Figure 4: RMSE Analysis 

 

We see in the graph of RMSE in Figure 4, that tabling has a sharp decrease in error 

on the second response, while KT only has a slight improvement from the first response. 

This suggests again that KT is underpredicting, and cannot confidently predict 

correctness with only one response. Tabling, whose average residual at response 2 is 

close to 0, has a much more accurate prediction for the second response in the sequence. 

6.1 BEST AND WORST PREDICTED SEQUENCES 
To further examine the performance of tabling versus KT, we found the sequences with 

the least accurate and the most accurate predictions from our two models. We found that 

the 3 worst sequences, and the 4 worst sequences were the same for Tabling and KT. 

Table 6: Top 3 worst-predicted sequences for Tabling and KT 

  

RMSE 

 # Sequence Tabling KT Count 

1 „1 1 1 1 0‟ 0.8232 0.9924 46 

2 „1 1 1 0‟ 0.7941 0.9835 58 

3 „1 1 0‟ 0.7913 0.9501 168 

  

Table 6 shows the 3 worst sequences for predicting the next response for Tabling and 

KT. The sequences make intuitive sense, showing responses that have a number of 

correct responses followed by one incorrect response. It makes sense that it would be 

difficult to predict the next response, because the previous response could either be an 

indication that the student doesn‟t know the skill, or simply a mistake that would be 

followed by a correct answer. It is worth noting that for these worst sequences, tabling is 

more accurate than KT. 

 

 

 



  
 

Table 7: Top 4 best-predicted sequences for Tabling and KT                                  

(ordered by Tabling's top 4, KT had #3 and #4 swapped) 

 
 

RMSE 

 # Sequence Tabling KT Count 

1 „1 1 1 1 1 1‟ 0.1478 0.0034 40 

2 „1 1 0 1 1 1 1 1‟ 0.1588 0.0056 35 

3 „1 1 0 1 1 1 1‟ 0.1641 0.0143 42 

4 „1 1 1 1 1‟ 0.1730 0.0091 559 

 

 

Table 7 shows the best-predicted sequences. As expected, both models are very 

accurate when the student has gotten a few questions correct in a row before the current 

question. It makes intuitive sense that the next question is very likely correct. For the best 

sequences, KT is more accurate than tabling. This is likely because if a student has gotten 

6 questions correct in a row, he definitely knows the skill and will very likely answer 

correctly. KT will have a very high probability of correctness for this sequence, but 

Tabling will only look at 4 of the responses, and will average the 5 sequence length 

predictions. The shorter length predictions will generally be much lower than a longer 

sequence of correct responses. 

7. DISCUSSION 
What we are suggesting with our Table model is a simple method for doing effective 

response prediction. Unlike Knowledge Tracing, the Table model offers no 

interpretability or domain insight. Knowledge tracing can be used for predicting student 

responses, but it also models a student‟s probability of knowledge. Interpreting this 

parameter can be useful in various educational applications. For instance, the Cognitive 

Tutor uses Knowledge Tracing to determine if a student is finished with the current skill 

and can move on in the curriculum. The Table model doesn‟t track any parameters, and 

doesn‟t even model students as their own entity. We enter a sequence of evidence 

responses as input into the table model, and it returns a prediction for the next response. 

There is nothing else to be learned from the table. 

For this reason, we see the table model as having a useful yet limited application. It 

has the distinct advantage over Knowledge Tracing of being computationally 

inexpensive. Both training the model and making predictions took seconds, whereas 

training a dynamic Bayesian Network using Expectation Maximization can take hours 

using a large enough dataset. If there is the need for interpretability, where predicting the 

student‟s response is not enough, our model is not appropriate. However, when the goal 

is strictly predicting the next response, we believe we have a lightweight compliment to 

KT that can increase student response prediction accuracy. 

8. FUTURE WORK 
The model used in the paper relied strictly on previous responses to make predictions. 

The tabling idea is a simple idea that could easily be expanded to leverage more features 

into the prediction. We could conceivably have additional rows to our table which show 

the percentage of correct responses where the student took longer or shorter than a certain 

amount of time to answer. We could also calculate the percent correct based on the 

number of previously answered questions on this skill. This way, in our prediction step of 

testing shown in Figure 2 would include the 5 predictions based on previous responses as 

well as predictions based on additional features from the dataset. Wang & Heffernan 



 

 
 

explored the impact of hints on student performance by finding the percent correct on 

items based on the number of hints requested (Wang & Heffernan 2011). This is another 

feature that could be added into our tabling model. 

Another area for improvement of the table modeling is the step of combining our 

predictions from the different table entries. For our results in this paper we simply 

averaged all of the predictions. Perhaps there is a way to better ensemble these 

predictions so that the more accurate predictions end up having more weight. The method 

used to ensemble would have to allow for missing values, because not every response 

tested will have 4 preceding responses. 
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