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Discussion boards, or online asynchronous discussions, have become increasing popular course tools for 
university-level engineering courses. As a step towards assessing student learning in online discussion, we are 

investigating whether it is possible to characterize successful versus unsuccessful question and answer (Q&A) 

type discussions. We use a four-state model in identifying different stages of the Q&A dialogue. In this paper, 
we examine whether it is possible to automatically classify patterns of interactions using a state transition model 

and identify successful versus unsuccessful student Q&A discussions. For four-state model classification, we 
apply Conditional Random Field and Hidden Markov Models to capture transitions among the states. The initial 

results indicate that such models are useful for modeling some of the student dialogue states. We also show the 

results of classifying threads as successful/unsuccessful using the state information. 
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1. INTRODUCTION  

 
After the emergence of the Internet in the 1990's, many web technologies have been 

utilized for educational purposes. Online discussion boards, one such web technology, 

have been a medium for students and instructors to share their ideas in web-enhanced 

traditional courses and web-based distance-learning courses. This work is gathered from 

the student discussion board that is used by a undergraduate computer science course at 

the University of Southern California. The course contains programming projects, where 

a student needs timely support from the instructor or other students to improve his or her 

performance.  

As a step towards assessing student learning in online discussions and assisting 

instructors, we are investigating whether it is possible to characterize successful versus 

unsuccessful question and answer (Q&A) type discussions. A four-state model was 

generated based on an analysis of sample discussion threads and its dialogue status [3]. 

The states that we model are initiation, understanding, solving and closing. In this paper, 

we examine whether it is possible to automatically classify patterns of interactions using 

a state transition model and identify successful versus unsuccessful student discussions. 

In order to capture transitions among the states, we use graphical models, Conditional 

Random Fields (CRF) and Hidden Markov Model(HMM), that are often used for labeling 

sequential data.  
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We use information sharing „speech acts‟ and user dialogue roles as features for 

generating the classifiers. The overall classification of the threads as successful or 

unsuccessful relies on the state model.  The initial results indicate that graphical models 

are useful for identifying some of the states. Using annotated state information, the 

system can classify the discussion successfulness with 96% accuracy. 

 

2. CHARACTERIZING SUCCESSFUL VS. UNSUCCESSFUL THREADS WITH 
A STATE TRANSITION MODEL  
In a Q&A type discussion, if an information seeker‟s problems get resolved, we can say 

that the discussion reached a successful conclusion, or simply, that the discussion was 

successful. What, then, makes one discussion thread successful and another unsuccessful? 

Successful discussions can be defined in many ways: “Is the initial problem resolved?” 

“How many answers do we have?” “Is instructor involved in this discussion thread?” and 

so on. We define successful discussion as a discussion in which all of an information 

seeker‟s questions get resolved, including initial questions, related questions, similar 

questions, and questions about derived problems. A four-state model was developed 

based on an analysis of sample discussion threads: An initiation state, an understanding 

state, a solving state and a closing state [4]. 

 

 
 

Fig.1. State Transition Model 

 

 

 

 
Fig. 2. Discussion thread examples (a: I-U-S-C | b: I-S-I-S | c: I-U-S-I | d: I-U) 



  
 

In the first state (initiation), there must be a problem that exists, which is almost always 

proposed by the information seeker. A problem is an issue that makes it difficult to 

achieve a desired goal, and its context, which may include the author‟s unique situation, 

issue or proposition.  In the second state (understanding), the problem is elaborated 

through communication with other users, who need to understand why this problem 

exists, and identify the obstacles that the user confronts.  Multiple messages may be 

required in this state, depending upon the problem type, for example, whether the 

problem is common or unusual, and the author‟s ability to clearly describe the problem. 

In third state (solving), information providers give instructions, propositions, or hints that 

suggest solutions or actually solve the problem. The solving state may also require 

multiple messages if the information does not satisfy the seeker. Or, if the information 

provider misunderstands the root cause of the problem, the state machine might transition 

back to the understanding state. 

 

In Figure 2, we describe four discussion thread examples with the transition model 

Threads a. and c. are long, and threads b. and d. are short. We labeled user roles (seeker 

or provider), message roles (sink or source), and speech acts, such as question, instruction, 

description, done, issue, and proposition that can be automatically labeled by our 

classifiers [1], [2]. Thread a. has all four states in sequence, ending with a closing.  

Thread b. doesn‟t go through the understanding state and closing is missing, but it ends 

with a solving state without an additional issue. Threads c. and d. are both considered 

unsuccessful since thread c. ends at the seeker‟s initiation state and thread d. ends at the 

provider‟s understanding state. There are other possible patterns that can be captured 

with the transition model.  For example, for difficult problems, students may stay in the 

understanding or solving state longer than average, making the thread longer. The model 

also provides clues about the type of student participation such as problem initiator, 

problem elaborator (in the understanding state), problem solver, etc. We expect that the 

state transition model will help us characterize the issues and qualitatively profile 

students. Table I describes circumstances for which state transitions occur with examples. 

 

3. CLASSIFYING STATES WITH GRAPHICAL MODELS 
 

This section describes how we model each state using graphical models: conditional 

random field (CRF) and hidden Markov model (HMM). 

 

3. 1 FEATURES USED 
 

The experimented data consists of a subset of one semester‟s forums, which is annotated 

for both state transitions and sink/source information. The agreement between two 

annotators for state transition had a final Kappa of 0.84.Sink/source information 

describes both the characteristics of the post, and the characteristics of the poster. There 

are four types of sink/source information—hasSink, hasSource, isProvider, and isSeeker. 

hasSink indicates if the post contains a request for information. while hasSource indicates 

if the post gives information. Note that these two categories are not mutually exclusive—

one post can give and request information. isProvider and isSeeker are mutually 

exclusive and describe the poster‟s main intention—if the poster wants to provide 

information, or is actively seeking information within the thread. Inter-annotator 

agreement for hasSink had a Kappa of 0.93, hasSource had a Kappa of 0.96, and 

isProvider/isSeeker had a Kappa of 0.99.Initiation only occurs with information seekers. 



 

 
 

All other states can occur with information providers or seekers, however, both 

understanding and solving states begin with information providers. Since both 

understanding and solving phases can contain multiple iterations of question-answer 

discussion, posts answering or further questioning those initial solving or understanding 

posts are also labeled solving or understanding, respectively. A total of 73 threads, 

containing 254 posts, were used to build a model for state transition. 151 of these posts 

were labeled solving, 93 were labeled initiation, 8 were labeled closing, and 2 were 

labeled understanding. 

First, we decided to initially use all sink/source information as features for this 

classification problem. Upon inspection of the annotation manual, it seemed that most 

definitions could be written as a combination of sink/source information. Additionally, an 

automatic classifier for sink/source information already exists, with a F-measures (a score 

that combines recall and precision) of 0.88 for hasSink, 0.83 for hasSource, and 0.84 for 

isProvider/isSeeker [1]. However, since this is preliminary work, we chose to use the 

gold-standard human classified sink/source information. 

Second, we added one more feature to classify state, which is THANK relation between 

posts. This relationship is usually much correlated to the closing state because people 

tend to appreciate when they got what they want in the thread. 

 

Table I. State transition matrix examples. 
State Initiation Understanding Solving Closing 

In
it

ia
ti

o
n

  

I: 1. Other seekers‟ 

agreement on initial 
seeker‟s problem, e.g., 

“Me too, I „m getting 

the same error.” 

U: 1) To understand 

seeker‟s problem, e.g., 
“How did you propagating 

your dirty bit?” 

 

S: 1) Provider‟s answer with 

instruction, disagree/agree, 
proposition, or question, e.g., 

“Try putting them in a loop.” 

2) Seeker found answer by 
himself, e.g., “I just got this.” 

 

 

U
 

Same as I. Same as U. Same as S.  

S
o

lv
in

g
 

1) Same as I. 

2) Same Seeker reports 
derived problems, e.g., 

“I found the reason of 
the problem and now I 

have another 

problem…”  

1) Seeker explains details 

about his/her problem and 
Providers ask about 

problem detail again until 
they understand the 

seeker‟s problem correctly, 

e.g., “Then where did you 
set the flag?” 

1) Same as S. 

2) Seeker does not understand 
Provider‟s answer message, 

e.g., “Where exactly can I get 
semaphore?” 

 

C: 1) Seeker 

thanks the 
Provider  

2) Provider 
gives praise to 

Seeker for 

solving the 
problem. 

C
lo

si
n
g
 

1) Same as I. 

2) Same Seeker reports 
derived problems, e.g., 

“I found the reason of 
the problem and now I 

have another 

problem…”  

 

 
 

 
 

 

1) If closing is reached by 

non-initial problem provider 
and if initial problem was not 

resolved, he can bring state 
into Solving state, e.g., “But I 

am still getting bus error 

from …” 

Same as C. 

 
 

 
 

 

 

3. 2 SELECTING CLASSIFIER MODELS 
 

After looking at the data, we chose representative supervised machine learning 

algorithms to try to model these state. We chose to investigate using decision trees, which 

would classify each post individually, and hidden Markov model (HMM) and linear-

chain Conditional Random Field (CRF) which would classify each thread as a whole. 

Decision trees were chosen for multiple reasons. First upon inspecting the annotation 

manual, it became apparent that our feature-space was highly partitionable if we used 

sink/source information as our features. Since decision trees iteratively partition the 



  
 

feature-space, this seemed to be a natural fit. Also, since decision trees produce output 

that‟s easily human-readable, they are commonly chosen as a first-pass algorithm. We 

chose to investigate hidden Markov model[Figure.3] since it takes into account 

characteristics of the thread as a whole in generative way. However, unlike decision tree, 

which trains at the post-level, a HMM trains at the thread level, so we have “more” 

training data for the decision trees, at the cost of the thread‟s characteristics. Finally, we 

chose to use linear-chain CRF[Figure.3] to improve learning by considering arbitrary 

dependencies on the feature sequences in discriminative way[5].  

 

                         
HMM                                                            Linear-chain CRF 

 

Fig. 3. Factor Graphs of HMM and linear-chain CRF 

                               Yi ∈{Initiation, Understanding, Solving, Closing } 

        Xi ∈{ hasSink, HasSource, isProvider, isSeeker, isPosAck} 

 

To test supervised learning classifiers, we compare these classifiers with the same 

distribution as the training set. For each classifier, we performed 10-fold cross-validation. 

k-fold cross-validation is a process where the data is randomly partitioned into k 

complementary subsamples, then k different models are built, each one testing on its own 

k-th portion of the data, and training on the remaining data. We then analyze the data 

based on Kappa, accuracy (i.e. percent correct overall), precision (i.e, correctly classified 

in a category over total number of that category classified), and recall (i.e, percentage 

correctly classified per category). To calculate these measures for the 10-fold cross-

validation, we use a weighted average for precision, recall, and accuracy, with the weight 

controlling for the number of posts each model classifies. 

 

3.3 CLASSIFICATION RESULTS 
 

State Classification 

 

Table II shows kappa values with the human annotation. Table III shows precision and 

recall scores for the three classifiers. The three classifiers show different strengths in this 

experiment. Linear-chain CRF shows highest kappa and accuracy although it cannot 

recognize understanding state, which mainly comes from the fact that only two out of 254 

posts are in understanding state. HMM is the only model to correctly classify any 

understanding instances. We expect that as we use more data, we can improve the 

accuracy of the classifiers. For implementation, we used Jahmm[6] for HMM, mallet[7] 

for linear-chain CRF and Weka[8] for decision tree 

 

 

 

 

 

 



 

 
 

Table II. Kappa and Accuracy for tree, HMM and linear-chain CRF models 

Model Kappa Accuracy 

Tree (J48) 0.6964 0.8386 

HMM 0.6493 0.8071 

LCCRF 0.7824 0.8937 

 

Table III. Precision and Recall for Rand, Decision Tree, HMM and linear-chain CRF 

models 

 Precision Recall 

Model I U S C I U S C 

Tree (J48) 0.7317 0.0000 0.9516 0.7143 0.9677 0.0000 0.7815 0.6250 

HMM 0.6691 0.5000 1.0000 0.6250 0.9785 0.5000 0.7152 0.6250 

LCCRF 0.9733 0.0000 0.8721 0.5714 0.7849 0.0000 0.9934 0.5000 

 

Discussion Thread Classification 

We used the above state information and the final post sink/source labels for classifying 

successful versus unsuccessful discussion threads. We have the same accuracy of 95.83% 

in three supervised learning algorithms which are decision tree, support vector machine 

and logistic regression. The results indicate two things: first, state information and the 

final post sink/source labels are worthwhile to be used in classifying successful threads in 

online discussion boards. Second, this data used in the feature space is highly separable 

with some exceptions, which come from unanswered original question and partially 

answered question. All the three classifiers failed to differentiate these exceptions 

because they reside virtually in the same properties as successful threads usually are. For 

this reason, the features related to an existence of an unanswered question may improve 

performance. 

Table IV. Precision, Recall and Accuracy of classifying Successful/Unsuccessful 

Threads 

Model Accu(%) Accu(%) 

(Short) 

Precision Recall Accu(%) 

(Long) 

Prec Recall 

Tree (J48) 95.83 95.65 0.97 0.90 96.30 0.98 0.88 

SVM 95.83 95.65 0.97 0.90 92.56 0.85 0.85 

Logistic 

Regression 

95.83 94.48 0.92 0.90 92.56 0.85 0.85 

 

Additionally, we separate our threads into two groups by the length of threads. One 

is short thread group and the other is long thread group. We define short thread as a 

thread with less than three posts. Others are long threads. Accuracy rates and 

precision/recall in classifying with short and long threads are also presented in Table IV. 

The three classifiers show similarly good performance. All the classification was 

implemented by using Weka[8] with ten-fold validation . 

 

4. RELATED WORK 
 

There have been various approaches to assessing collaborative activities. Various 

approaches of computer supported collaborative argumentation have been discussed. 

Machine learning techniques have been applied to train software to recognize when 

students have trouble sharing knowledge in collaborative interactions [9].  



  
 

Rhetorical Structure Theory [10] based discourse processing has attracted much attention 

with successful applications in sentence compression and summarization. Most of the 

current work on discourse processing focuses on sentence-level text organization [11] or 

the intermediate step [12]. Analyzing and utilizing discourse information at a higher level, 

e.g., at the paragraph level, still remains a challenge to the natural language community. 

In our work, we utilize the discourse information at both a thread level and a message 

level. 

There has been prior work on dialogue act analysis and associated surface cue words [13], 

[14]. Although they are closely related to our speech act (sink/source) analysis, it is hard 

to directly map the existing results to our analysis. The interactions in our corpus are 

driven by problems or questions initiated by students and often very incoherent. 

There has been effort to analyze interactions in on-line communities. For example, Talk-

to-me [15] can predict the likelihood of that a message will receive a reply based on the 

content of the message and the message sender. Our work provides complementary 

capability by providing Speech Act based interaction analysis capabilities.  Also our 

analysis work is driven by requirements from instructors and students rather than need of 

general on-line communities seeking information.  

Graph-based algorithms have been used in text mining, clustering, and other related 

problems including characterizing dialogue with tutors [16]. Our work extends the use 

and demonstrates how we can profile or find patterns in online discussion threads, where 

threads are represented by graphs and messages within a thread are represent nodes in the 

graph. 

 

5. DISCUSSION AND FUTURE WORK 
 

We have presented a model for automatically analyzing patterns of student interactions 

within discussion threads. With respect to modeling state transitions, our preliminary 

models show Kappa scores within the range of our human annotators. Although the 

current state classifiers were created from sink/source annotations, as we have automatic 

classifiers sink/source, we plan to generate end-to-end automatic classifiers. By 

combining these automatic classifiers, we hope that we can create assessment tools for 

instructors. As the number of participants increases, some over hundreds students, 

instructors need assistance in efficiently processing a large amount of Q&A threads and 

figuring out which threads need close follow-up.  

We also plan to relate discussion topic models to the discussions state model so we can 

identify topics of unresolved discussions. Although the presented classifiers are only 

tested with a sample data from computer science online discussions, the approach can be 

adopted in analyzing large online discussion system in real-time. 
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