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Many educators utilize an outcomes-based approach these days and maintain student performance records with regards to the
individual learning outcomes. However, extracting meaningful information from these ever-growing datasets is a daunting task

for even a skilled statistician. In this paper, we describe the implementation of a user-friendly software tool called DMOBE
(Data Miner for Outcome Based Education). This tool was developed to extract key learning patterns from student performance
records accumulated by educational programs following an outcome-based instructional paradigm. This tool allows instructors
of such courses to mine their data and interpret the results in such a way as to provide insights into course optimization

and more effective teaching methods. Specifically, this tool uses supervised feature selection to discover the relevant learning
outcomes in a course based on their ability to predict student performance in a subsequent course and then uses dependency
mining to determine whether mastery of any other outcomes in the course will influence mastery of a given outcome.

1. INTRODUCTION

Outcome-based education [William 1994] has recently garnered a lot of attention in higher education. It
is a learning paradigm that requires students to demonstrate specific competencies at the end of a set of
learning experiences . It is based on defining a clear set of learning outcomes and establishing a learning
environment that enables the students to achieve mastery of those outcomes. The analysis of outcome-based
assessment data can aid in understanding student learning patterns and the results of such analysis may
provide instructors with better insights into student competency and facilitate the development of effective
pedagogical methods. With the increased focus by accrediting bodies on the definition and assessment of
student learning outcomes, increasing number of educators today utilize an outcomes-based approach in their
classrooms and maintain records of student performance on specific learning outcomes. However, extracting
meaningful information from this ever-growing collection of data is a challenging task. Data mining methods
can be extremely helpful in developing a computational framework for the analysis of course assessment data.

Data mining methods have become very effective data analysis tools in various application domains,
primarily because of their ability to deal with large volumes of structured and unstructured data and their
ability to discover relevant and non-trivial information without prior knowledge. While traditional database
queries can answer questions like “find the students who received an A in CS101” or “find the learning
outcomes that Smith could not master in CS102”, data mining can provide answers to more abstract
questions like “find all students who will possibly succeed in the computer science program” or “identify the
critical learning outcomes of CS101”. Data mining has recently been used in education research. Examples
include discovering potential student groups with similar characteristics [Chen et al. 2000], predicting student
grades based on logged data in an online course [Minaei-Bidgoli et al. 2003], predicting student grades from
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test scores [Minaei-Bidgoli and Punch 2003], predicting student grades based on actions taken by students
in solving homework and exam problems [Minaei-Bidgoli et al. 2004], finding individual learning patterns
[Yudelson et al. 2006], building personalized web-based educational systems by discovering learners’ needs
[Despotovic et al. 2008], predicting student performance based on web usage data in an online course [Romero
et al. 2008], and applying data mining in a course management system to extract interesting information for
instructors [Romero and Garćıa 2008]. These works have primarily focused on test/assignment scores and
usage data in online course management systems. To the best of our knowledge, data mining has not been
applied to outcome-based assessment data.

The goal of this work was to develop a user-friendly software tool called DMOBE (Data Miner for Outcome
Based Education) to provide data mining support for analyzing outcome-based assessment data. We believe
that the application of data mining techniques may help instructors improve teaching methods, thereby
increasing the quality of education received by their students. On a larger scale, application of data mining
to course assessment data could become a powerful vehicle for supporting programmatic assessment efforts
at an institution. We addressed two specific knowledge extraction problems. The first task was to extract
the relevant learning outcomes in a course based on their influence on student performance in a subsequent
course. The second task was to discover the dependency of these relevant outcomes on the mastery of other
outcomes. We presented a modified association mining [Agrawal et al. 1993] framework, called dependency
mining, to address the second task.

The remainder of the paper is organized as follows. In section 2, we present the architecture of our tool and
briefly describe the different data mining methods that were incorporated into our tool. We also present a
modified association mining framework for discovering dependency between course outcomes. In section 3, we
describe our datasets and present the experimental results. Finally, in section 4, we will provide concluding
remarks and scope of future research.

2. DATA MINING FOR OUTCOME BASED EDUCATION

2.1 Overview

Figure 1 shows the data mining workflow that we utilized for discovering relevance and dependency of
course learning outcomes using course outcome assessment data. Our system first allows users to select
and prepare data that is currently saved in a CSV (comma separated values) or spreadsheet file (e.g., a
spreadsheet exported from Microsoft Excel, or some similar program). The data is then analyzed using
different data mining tasks as directed by the user. To accomplish this, our tool uses the Java Runtime
Environment to invoke the embedded data mining modules provided by the open-source data mining package
Weka1 with appropriate parameters. The results of mining the assessment data are saved and analyzed
for errors before being streamlined to remove non-essential information and displayed to the user in a
meaningful way. We created a user friendly graphical user interface (GUI) that will allow educators to
evaluate their own outcome-based assessment data with minimal computing skills. It provides intuitive and
readily understandable controls to allow the selection of the user’s data, run the data through the desired data
mining task, and display the results of the chosen task in a format easily understood by users with a minimal
knowledge of the technical details of the algorithms utilized. In the remainder of this section, we provide a
brief description of the specific data mining methods we utilized and describe how we have incorporated each
method to streamline our software tool. We will cover three main aspects of our application: data cleaning
and preprocessing, extracting relevant outcomes, and identifying dependency of outcomes.

1http://www.cs.waikato.ac.nz/ ml/weka
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Fig. 1. The data mining workflow for extracting useful knowledge from outcome assessment data.

2.2 Data Cleaning and Preprocessing

In order to perform any data mining task on the assessment data, it is very important to prepare the data
by cleaning and preprocessing it. The purpose of the data cleaning step is to remove irrelevant items from
the data. This involves transforming data by creating new attributes and reducing the number of attributes.
We accomplish this goal in three steps.

The first step allows the user to select a course assessment data file. This file is presumed to be a .xls,
.csv, or a tab-delimited .txt file that can easily be created/exported by popular spreadsheet packages such as
Microsoft Excel or OpenOffice. Furthermore, the data must be compiled from one specific course and contain
a header row with the following attribute names in order: a student identifier, one or more course attributes
(including at least a final letter grade), and a list of several learning outcomes denoted as “Outcome x” or
“outcome x”. The assessment of a given outcome is presumed to be represented as ‘1’ indicating mastery of
the outcome or ‘0’ indicating otherwise. Figure 2(a) shows the initial screenshot of the DMOBE graphical
user interface.

The second step is required to “cleanup” data files. In this step, all non-essential characters (if any) are
removed that may have been added to the data by the exportation process. Then the data is scanned for any
student receiving a grade other than ‘A’ through ‘F’. This limits our dataset to students who have seen the
course through to completion. Next, the program fills in all missing outcome results for each student record
(if any), converting any numerical entries greater than 1 to 1 and converting blank or non-numerical entries
to 0. Finally, to reduce the number of outcomes considered and therefore the time and space requirements
of the analysis, all individual outcomes in the file with identical performance by every student are removed.
This removes any erroneously entered columns of all 0s and discards outcomes which were mastered by every
student as trivial. Figure 2(b) shows the screenshot of the DMOBE graphical user interface after this step
is performed on a sample course outcome assessment dataset.

The third step is hidden from user view and creates a “.arff” file, which is the required file type used
by the Weka data mining package. This file only contains the student identification and outcomes from the
imported file, is created in the same directory as the imported file, and is deleted when the program closes.

2.3 Extracting Relevant Course Outcomes

The goal of this component is to determine those learning outcomes in a given course, mastery level in which
influence student performance in the same or a subsequent course. We utilize supervised feature selection
for this purpose. In general, the purpose of feature selection in any data mining task is to identify relevant
features from a dataset. The goal is to remove noisy or redundant features that make the discovery of
meaningful patterns from the data difficult. The general approach in feature selection is to compute a score
for each attribute and then to select the attributes with the best scores.
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Fig. 2. Screenshots of DMOBE (Data Miner for Outcomes Based Education).

Let O = {O1, O2, . . . , Om} be the set of m learning outcomes in a course and C be the class label that
can be a categorical measure of assessment (e.g., the letter grade) in the same or a subsequent course. Our
goal is to find the relevant outcomes, i.e., the outcomes whose mastery level can predict student performance
in terms of C. This is accomplished by ordering the original outcomes into O′ = {O′

1, O
′
2, . . . , O

′
m} so that

S(O′
j) ≥ S(O′

j+1), where S(O′
j) represents the score of O′

j that measures how O′
j can discriminate among

the different values of C. We evaluate each outcome (a feature) independently by computing the Chi-squared
(χ2) statistic with respect to C. The χ2 value is computed by aggregating the deviation of observed values
from expected values and thus a higher value indicates stronger relevance of an outcome with respect to C.
If ai is the number of instances having the ith value of an attribute, cj is the number of instances having the
jth class label, pij is the number of instances having the ith value of the attribute and jth class label, and n
is the total number of instances, then the χ2 value of an attribute is computed as [Altidor et al. 2011]:



χ2 =
∑
i,j

(pij − aicj/n)
2

aicj/n

In our tool, in order to identify the relevant outcomes in a given course, the user also needs to upload and
clean the assessment data for a “target” course based on which relevance is determined. The given course
and the target course are scanned for matching student ids. Any student found to have not taken the target
course is discarded as irrelevant. For a student who has taken both the courses, the grade in the target
course is inserted as the class label. A value of ‘1’ is used for students receiving an A or B and ‘0’ otherwise.
Then the χ2 method is applied for computing the relevance of each outcome. The final result is the ordered
display of each outcome according to its χ2 value. The more this value is, the more relevant an outcome is
in predicting success in the target course. Figure 2(c) shows the screenshot of the DMOBE graphical user
interface after relevant learning outcomes are extracted from a sample course outcome assessment dataset.

2.4 Identifying Dependencies between Course Outcomes

We attempt to give educators insight as to which outcomes within a single course can be strongly associated
with other outcomes within that course. This may provide answers to such questions as, “In Chemical
Principles I, is the mastery of any particular outcome strongly associated with the mastery of outcome#34?”
Our goal is to show the various strong dependencies that may exist between particular outcomes in a course.
This will allow instructors to know which key outcomes in the course to emphasize in order to increase
students’ mastery in a selected target outcome. This component of our tool is based on the framework of
association mining.

The goal of association mining is to derive correlations among multiple features of a dataset [Agrawal
et al. 1993]. An association rule is an implication of the form X ⇒ Y[Supp,Conf ], where X and Y are disjoint
itemsets, Supp is the support of X ∪ Y indicating the percentage of total records that contain both X and
Y , and Conf is the confidence of the rule that is defined as Supp(X ∪ Y )/Supp(X). The intuitive meaning
of such a rule is that records of the dataset that contain X tend to contain Y . A typical example of an
association rule from the outcome based education domain can be Oi ⇒ Oj[.1,.8]. This implies 80% of the
time when students perform well on Oi, they will also perform well on Oj and 10% of the student records
have students performing well on Oi and Oj together. Here the confidence of the rule is 80% and the support
of the rule is 10% .

Association mining can reveal the fact that a group of students performing well on a set of outcomes also
perform well on another set of outcomes. This type of mining can be applied at two levels; in a single course
or across multiple courses. Let us assume that a course has several learning outcomes: {O1, O2, . . . , Om}.
If association mining reveals that students performing well on Oi also perform well on Oj and students
performing poorly on Oi also perform poorly on Oj , then it may be reasonable to reorganize the course
materials so as to cover Oi before Oj . For different courses, if an outcome Oi shows strong association to an
outcome Ok in a subsequent course, then the instructor may put emphasis on explaining concepts related to
Oi in the former course.

The goal in a particular application is to find all association rules that satisfy user-specified minimum
support and minimum confidence constraints. Association rules are generated in two steps. The itemsets
having minimum support (called large itemsets) are discovered first and then these large itemsets are used to
generate the association rules with minimum confidence. The Apriori association mining algorithm [Agrawal
and Swami 1994] has widely been accepted as the algorithm of choice in many applications. The process of



generating large itemsets in Apriori consists of several passes and the large itemsets found in one pass are
used to generate large itemsets for the next pass. In the kth pass, the candidate itemsets of length k (Ck) are
generated by joining large itemsets of length k− 1 (Lk−1) and leaving out itemsets containing any non-large
subset. Formally, Lk−1 ∗ Lk−1 = {X ∪ Y |X,Y ∈ Lk−1, |X ∩ Y | = k − 2}. All candidate k-itemsets having
support values greater than the minimum support threshold constitute the large k-itemsets Lk. Formally,
Lk = {X|X ∈ Ck, Supp(X) ≥ Suppmin}. After all the large itemsets are generated, for every large itemset
L, the following set of rules are generated: {A ⇒ (L−A) | A ⊂ L,A ̸= ∅, Supp(L)/Supp(A) ≥ Confmin}.

The traditional notion of association rule mining is based on the presence of items in the datasets, i.e.,
the focus is on discovering only positive rules of the form X ⇒ Y . The capture of negative rules of the
form ¬X ⇒ ¬Y is not supported. But negative rules can be important in an application. For example, in
the outcome based education domain, if Oi ⇒ Oj reveals that students performing well on Oi also perform
well on Oj , then ¬Oi ⇒ ¬Oj will reveal that students performing poorly on Oi also perform poorly on Oj .
The notion of negative association rules was introduced in Silverstein et al. [1998] where both the presence
and the absence of items are considered for generating rules. Also, in the traditional framework, rules are
generated to discover the association between different possible combinations of items. But in the outcome
based education domain, it is important to identify which outcomes may influence a given outcome, i.e, to
identify the outcomes that success in a given outcome may depend on. In such a case, it becomes important
to specify a target outcome and extract only rules that have a single outcome on the left and a single outcome
(the target outcome) on the right.

To address the above issues, we define a modified rule mining framework for our application. We call
this target dependency mining and we define two types of dependencies–positive dependency and negative
dependency. Let O = {O1, O2, . . . , Om} be a set of m learning outcomes and Oj ∈ O be a target outcome.
Then we define a dependency rule of Oj as an implication of the form Oi ⇒ Oj , where Supp(Oi ∪ Oj) ≥
Suppmin and Supp(Oi∪Oj)/Supp(Oi) ≥ Confmin. We also represent positive and negative dependencies by
defining the positive determinants and negative determinants of an outcome. The positive determinants of
Oj are defined as D+

j = {Oi | Oi ⇒ Oj}, i.e., the set of all outcomes that individually imply Oj by satisfying
the minimum support and minimum confidence constraints. Inversely, the negative determinants of Oj are
defined as D−

j = {Oi | ¬Oi ⇒ ¬Oj}, i.e., the set of all outcomes whose false values individually imply the
false value of Oj by satisfying the minimum support and minimum confidence constraints. Our modified
framework not only makes the rules easier to interpret, but also substantially reduces the computational
time required to generate the rules by bypassing most of the large itemsets generation.

DMOBE provides two options of selecting a target outcome before a user can discover the dependencies.
The user can select “any” available outcome. This option can be used without any prior extraction of relevant
outcomes. Alternatively, after a set of relevant outcomes have being extracted, an outcome may be selected
from the resulting list of ranked outcomes. After a target outcome is selected, all the positive and negative
dependencies are extracted by executing dependency mining. Note that the dependency mining has been
implemented by modifying Weka’s Apriori implementation. We used a default minimum support of 0.2 and a
default minimum confidence of 0.75, but the user has the option of adjusting these parameters and specifying
the maximum number of rules to be generated. Once the rules are generated, the results are meaningfully
displayed in a table along with the respective confidence values. Figure 2(d) shows the screenshot of the
DMOBE graphical user interface after the dependency analysis is performed for a given relevant outcome.



3. EXPERIMENTS

3.1 Datasets

We evaluated our work using data provided by the Department of Chemistry at Fairmont State University,
which uses mastery-based course assessment in their lower-level courses. These courses are CHEM 1105
(Chemical Principles I), CHEM 1106 (Chemical Principles II), CHEM 2201 (Organic Chemistry I), and
CHEM 2202 (Organic Chemistry II). These courses are taken in this sequence. Each course has approximately
sixty outcomes. Each student is assigned a “mastery level” in each outcome and the final letter grade is
assigned based of the percent of outcomes mastered. We used the outcome mastery data from 2004 to 2007
for evaluation purpose. This data provides us with a strong sample set with which to evaluate our methods
while also giving the chemistry department immediately usable assessment information.

3.2 Analysis of Results

We found some very helpful information in the list of course outcomes that are relevant to success in a
subsequent course. Figure 2(c) shows the ranked outcomes in CHEM 1105 that are relevant to success in
CHEM 1106. The top three relevant outcomes are three difficult outcomes from near the end of CHEM 1105
that build on several underlying principles and skills. Two of these are quantitative, multi-step stoichiometry
outcomes that require the synthesis of several previously learned skills. One of these, outcome#35 (multi-
step stoichiometry) includes extraneous information and requires students to apply knowledge from seven
previous outcomes. Another relevant outcome in CHEM 1105 with respect to success in CHEM 1106 is
outcome#36 that requires the students to be able to “list and rank intermolecular forces”. This sounds like a
simple outcome but in fact it requires that students count valence electrons, draw a Lewis structure, predict
a molecular shape using the valence shell electron pair repulsion model, evaluate and draw bond dipoles,
pictorially or vectorially add the bond dipoles to get a net dipole for the molecule, and draw the net dipole.
Then they are asked to do the same thing for three more compounds, in order to predict and rank the
intermolecular forces for each of those compounds! The strong predictive nature of outcome#36 called our
attention to the complexity of this outcome, and the outcome was subsequently broken down into smaller
chunks to support student learning.

The next three outcomes in CHEM 1105 that are relevant to success in CHEM 1106, outcomes #23,
#16, and #32, are all based on math skills, including graphical interpretation. Outcome#16 requires that
students solve an algebraic expression involving logs or exponents, and explain each step. Outcome#23
requires students to extract information from linear regression parameters; they are given a graph with linear
regression parameters and an equation to which they can match the graph in order to extract information.
Outcome#32 requires that students interpret a spectrum using information in a provided data table. They
match observed peaks to information provided in a data table, then match the assigned peaks in the spectrum
to functional groups in a selection of molecules.

The data set for which analyses are provided in this paper includes the years 2004-2007. We are looking
forward to comparing the patterns discussed here to patterns that emerge using data from the subsequent
years. We have made some changes each year to the teaching methods and in some cases to the assessments
themselves, to improve student learning based on a simpler analysis of percent class mastery of various
outcomes. As a result, we would expect some of the relevance patterns to change as more students become
successful on certain outcomes. Examples of this might be outcomes #36 and #38 in CHEM 1105.



4. CONCLUSION

With outcome based learning paradigm increasingly being adopted in higher education, the importance
of maintaining outcome assessment data is on the rise. These knowledge rich datasets can be extremely
beneficial in improving the quality of eduction. But a meaningful analysis of these ever-growing datasets
presents a challenge to the educators. We have developed a software tool that allows educators to easily
apply data mining techniques to analyze several key aspects of their pedagogy. Using this tool, an instructor
can (a) import his own course assessment data, (b) extract useful, meaningful, and otherwise unattainable
information by applying sophisticated data mining techniques, and (c) view simplified, readily understood
results through a flexible graphical user interface. Specifically, this tool allows an educator to discover which
outcomes of a course are relevant to success in a subsequent course and which outcomes within a course
strongly influence the mastery of a given outcome. We used supervised feature selection to extract relevant
outcomes. To discover the dependency of a given outcome on other outcomes, we modified the traditional
framework of association rule mining which we refer to as “dependency mining”. We believe that this tool
can help improve the overall quality of education in a number of ways. It will enable the streamlining of
curricula and allow for the early identification of “at risk” students. Furthermore, this tool will provide
educators a way of identifying a course’s key learning outcomes and a means of empirically evaluating the
relationships between outcomes.
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