
Towards Automatic Hint Generation for a Data-
Driven Novice Programming Tutor

I. WEI JIN

Shaw University, USA

AND

I.I. LORRIE LEHMANN

University of North Carolina at Charlotte, USA

AND

I.I.I. MATTHEW JOHNSON

University of North Carolina at Charlotte, USA

AND

I.V. MICHAEL EAGLE

University of North Carolina at Charlotte, USA

AND

V. BEHROOZ MOSTAFAVI

University of North Carolina at Charlotte, USA

AND

V.I. TIFFANY BARNES

University of North Carolina at Charlotte, USA

AND

V.I.I. JOHN STAMPER

Carnegie Mellon University, USA
__
Hint annotation is one of the most time consuming components of developing intelligent tutoring systems. One

approach is to use educational data mining and machine learning techniques to automate the creation of hints
from student problem-solving data. This paper describes a new technique to represent, classify, and use

programs written by novices as a base for automatic hint generation for programming tutors. Our preliminary

evaluation shows that this approach can effectively cluster programs and therefore has potential to be a source
for automatically generated hints for novice programmers.

Key Words and Phrases: Intelligent tutoring systems, automatic hint generation, programming tutors,

educational data mining and data clustering

1. INTRODUCTION
Hint annotation is one of the most time consuming components of developing intelligent

tutoring systems. Barnes and Stamper developed a data-driven educational data mining

__

Authors‟ addresses: Wei Jin, Department of Computer Information Sciences, Shaw University, Raleigh, NC, USA.

E-mail: wjin@shawu.edu; Lorrie Lehmann, Matthew Johnson, Michael Eagle, Behrooz Mostafavi, and Tiffany

Barnes, Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA. E-mails:
ljlehman@uncc.edu; matjohns@uncc.edu; mjeagle@uncc.edu; bzmostaf@uncc.edu; tiffany.barnes@gmail.com;

John Stamper, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA. E-mail:

jstamper@cs.cmu.edu.

mailto:wjin@shawu.edu
mailto:ljlehman@uncc.edu
mailto:ljlehman@uncc.edu
mailto:mjeagle@uncc.edu
mailto:bzmostaf@uncc.edu
mailto:tiffany.barnes@gmail.com
mailto:jstamper@cs.cmu.edu

Figure 2. Equivalent programs

a = b * c;

d = e * f;

d = e * f;

a = b * c;

cin >> b;

cin >> c;

cin >> d;

a = b * c / d;

cin >> b;

cin >> c;

cin >> d;

t = b * c;

a = t / d;

cin >> b;

cin >> c;

cin >> d;

t = b / d;

a = t * c;

Figure 1. Different

orders but equivalent

technique that uses a Markov decision process (MDP), created from past student data, to

generate contextualized hints for students solving a specific problem. They have applied

this domain-independent approach called the Hint Factory in a logic tutor called Deep

Thought, and shown that it can provide hints for 70-90% of problem-solving steps, and

hints prevent students from abandoning the logic tutor [Barnes2010a, Barnes2010b,

Stamper2010a, and Stamper2010b].

We plan to extend this MDP-based approach to create a

data-driven programming tutor. To do so, we must find a

representation for novice programs that shows the incremental

steps taken towards complete, correct programs, and build a

way to compare the current “target” program to another

student‟s completed, more correct “source program” for hint generation. In this paper, we

propose a new technique to represent and classify student programs for hint generation.

This process requires us to create a state representation for programs that result in similar

states for programs with the same behavior. For statements that do not have variable

dependencies among each other, as in Figure 1, any ordering of these statements should

not affect the program representation. We should also be able to classify seemingly

different but equivalent programs. For example, the three program segments in Figure 2

assign the same value to variable a.

We propose to represent a program as a Linkage

Graph. A linkage graph can represent a program in a

concise manner but is also general enough to include

all programs with the same fundamental structure. We

also propose Condensed Linkage Graphs to classify

equivalent programs like those in Figure 2.

In the remainder of the paper, we present linkage graphs, how we might use them in

hint generation, and a preliminary study to investigate the feasibility of the approach. All

data are anonymized student lab tests from the Spring 2011 introductory programming

course at UNC Charlotte. There were about 300 students, but for most of this work we

analyzed only those receiving 100% credit. We conclude by discussing how the approach

might be combined with other features of novice programs to support the creation of

data-driven tutors for novice programmers.

2. RELATED WORK
There have been various approaches to programming tutors. The earliest programming

tutor, a LISP tutor, is a cognitive tutor [Anderson1985, Anderson1989]. Cognitive tutors

encode domain knowledge and problem-solving strategies in a “cognitive model”, an

expert system which can solve the problems in the many ways that students solve them.

Cognitive tutors have been shown to speed up learning by as much as a factor of three

[Anderson1995]. Jin‟s approach uses cognitive apprenticeship learning to scaffold

students in expert problem solving strategies to construct programs [Jin2011]. Lane uses

natural language dialog to help students develop pseudo code [Lane2003]. Boyer‟s

approach uses machine learning to develop effective dialog strategies for a Java tutor

[Boyer2011a, Boyer2011b]. Online peer review and tutoring is investigated in

[Hsiao2011]. Debugging tutors are used to help master programming concepts

[Kumar2001, Fernandes2004].

3. LINKAGE GRAPH AS A COMPACT REPRESENTATION OF A PROGRAM
A linkage graph for a program is a hierarchical directed graph, as shown in Figure 3,

where nodes represent program statements that modify variables, and directed arcs

indicate order dependencies. Control statements such as for and if are represented by

nodes that encompass the entire statement, and can be expanded into their own linkage

graphs, such as those shown in

Tables 1 and 2. We call a single

trace through the graph a linkage,

which connects statements that

modify the same variable, and arcs

represent variable dependencies.

A linkage graph is a set of

linkages intersecting one another.

The number of linkages

intersecting a node is the number

of distinct variables in the node.

Now we introduce the node

structure for if statements and for

loops. Similar nodes can be

similarly constructed for while

loops and other control structures. The linkages that go through a node for a

programming construct include the linkages for all the variables in the construct,

excluding all local variables belonging to the construct. Local variables have their

linkages in the sub-linkage graph inside the construct node.

Table 1. An if node

score<0&&score>100 score>=90&&score<=100 score>=80&&score<90 score>=0&&score<80

linkage graph for

{grade = „I‟;}

linkage graph for

{grade = „A‟; }

linkage graph for

{grade = „B‟;}

linkage graph for

{grade = „F‟;}

Table 2. A for-loop node showing sub-linkage graph

int i i =0 i<100 i++

sum=sum+i;

The node for an if statement contains specifications for all branches. For each branch,

the specification contains the logic expression for that branch and the linkage graph for

statements under that branch. The logic expression for each branch should be a complete

logic expression with no simplification. Table 1 shows an example if node.

A for-loop node contains initialization/test/update specifications and the linkage

graph for the loop body. An example for loop node is given in Table 2.

4. CONDENSED LINKAGE GRAPHS
Even though a linkage graph is a compact and concise representation of a program‟s data

flow and control flow, it is sometimes difficult to determine whether two programs are

equivalent directly from linkage graphs.

For example, the linkage graph for the

program in Figure 4 is different from the

one in Figure 3, even though these two

programs perform exactly the same set of

operations.

To identify equivalent computations,

we propose condensed linkage graphs

(CLG), which will be used to categorize

equivalent linkage graphs. CLG is a

linkage graph with all intermediate

variables removed. A variable is

considered to be an intermediate variable

sum i

double a, b, c, d, t;

cin >> b; cin >> c; cin >> d;

a = b * c / d;

cout << a;

double a; double b; double c; double d;

 cin >> b; cin >> c; cin >> d;

a = b * c / d;

cout << a;

Figure 3. The linkage graph for a program

double a, b, c, d, t;

cin >> b; cin >> c; cin >> d;

t = b / d;

a = t * c;

cout << a;

double a; double b; double c; double d; double t;

 cin >> b; cin >> c; cin >> d;

 a = t * c; t = b / d;

 cout << a;

Figure 4. Program with the same

operations but different linkage graphs

if it does not store an input value from the user or an output value of the program. To

create a CLG, the nodes that reference an intermediate variable are merged. For example,

we can obtain the CLG graph in Figure 4 by merging the 3 t-variable nodes in Figure 3.

For programming constructs, such as if statements and loops, the condensation is

performed locally. That is, even if a variable is not an input or output variable, if its value

is used inside the structure or if it is a loop control variable, we keep this variable in the

condensed linkage graph. We may also need to perform between-constructs analysis to

determine whether nodes for programming constructs can be merged.

5. LINKAGE GRAPH MATCHING
A linkage graph is a sequence of statement nodes where arcs specify variable

dependencies among nodes. For example, Table 3 shows the internal representation of the

linkage graphs in Figures 4 and 5. This representation is missing information about parent

nodes (i.e. the Preceded By column) to simplify discussion.

Table 3. Implementation of the linkage graphs for programs in Figures 4 & 5.

 Figure 4 Source Linkage Figure 5 Target Linkage

Node # Node Followed By Node Followed By

1 double a; 8 double t; 8

2 double b; 5 double b; 5

3 double c; 6 double c; 6

4 double d; 7 double d; 7

5 cin >> b; 8 cin >> b; 8

6 cin >> c; 8 cin >> c; Null (Need Hint)

7 cin >> d; 8 cin >> d; 8

8 a = b * c / d; 9 t = b / d; Null (Need Hint)

9 cout << a; Null double a; Null

Graph matching is based on the following observation: correct program solutions for

a problem have the same number and type input variables. So, although students may use

different variable names for particular quantities, their linkages will reveal the way each

is used. Therefore if we normalize the variable names in programs, we can match one

program to another. That is, we have to make sure that the same data item will be labeled

with the same variable name across different linkage graphs. Starting with matching input

variables and then matching computations, as we describe below, we can compare a

work-in-progress program with an existing correct solution and provide hints accordingly

based on the differences.

A linkage graph is constructed for the work-in-

progress program. It will be compared with a

collection of linkage graphs to determine which

linkage graph is the best match. If no student

linkage graph matches, we can use a condensed

linkage graph generated from an expert solution.

The condensed graph can then be expanded to match the work-in-progress program.

Figure 5 shows a work-in-progress version of the complete program in Figure 3. Its

linkage graph is shown on the right in Table 3. Assume the only linkage graph available

for matching, the hint “source”, is the condensed linkage graph on the left in Table 3. By

comparing these linkages, we can determine what is missing from the target work-in-

progress graph to obtain a complete program. The differences can be used to generate

hints for students. We can compare each equation in the graph for matching values when

we apply associative and commutative rules to get that a=t*c and generate the hint that

Figure 5. A work-in-progress

version of the program in Figure 3

double a, b, c, d, t;

cin >> b; cin >> c; cin >> d;

t = b / d;

the student should “multiply t by c to get a”. Table 4 shows how we expand the source

linkage graph (Table 3 (left)) to match the work-in-progress graph (Table 3 (right)).

Table 4. Entry 8 in Table 3 (left) is expanded to match the

work-in-progress graph in Table 3 (right).

ID Node Followed By

8. a = b * c / d;



a = b/d * c;

8a double t; 8b

8b t = b/d; 8c (Use for hint (“multiply t with c.”))

8c a = t * c; 9

When generating hints, we will need to use variable names that are meaningful to

students, not normalized ones. A preliminary analysis of novice programs shows that

students choose similar variable names. We have written an algorithm to match the

current work-in-progress program‟s variable names to those most commonly used in a

data set. In fact, of 300 instances of the first program in our introductory programming

class at UNC Charlotte, 97 of them use the variable name houseArea. A simple k-means

type algorithm suffices to match a student‟s program variables to those most commonly

used across a set of solutions to a given programming assignment.

6. EFFECTIVENESS OF CLGS FOR CATEGORIZING PROGRAMS
To evaluate the effectiveness of condensed linkage graphs at categorizing students‟

programs, we analyzed student submissions for two homework assignments, one

requiring students to write program with basic statements and one with for loops.

For the first assignment, students need to write a program to calculate how much a

person earns mowing a lawn. We analyzed 37 programs that were graded as being correct.

If we don‟t apply the distributive rule to arithmetic expressions (i.e. a*b+a*c is

considered different from a*(b+c)), 25 solutions (68%) have the same condensed linkage

graph CLG-A while 12 others (32%) share the same condensed linkage graph CLG-B. If

we apply the distributive rules (i.e. a*b+a*c is considered the same as a*(b+c)), CGL-A

and CGL-B are equivalent; so 37 solutions have the same condensed graph.

For the second assignment, students need to write a program to determine the number

of wrong answers a person gives in a driver‟s license test. We randomly chose 10 correct

solutions and found that three of them (30%) belong to one category, three (30%) belong

to the second category, while two (20%) are very close to the second category.

7. ANOTHER APPROACH IN REPRENSENTING PROGRAMS
To capture both the control and data flow of the student‟s submitted work we can embed

the program‟s branching into each variable. We can perform a static program analysis

and track the declaration, use, and assignment of each variable in the program. The result

is a set of regular expressions that describe all the possible values for each of the

variables used in the program. We can then normalize the values in this representation to

the base inputs. As shown in Table 5, students used if statements in different ways for a

lab assignment. Student A‟s solution represented by Table 5 row 1 is shown in Figure 6.

Table 5: Regular expressions for all possible variable values

SID Variable Name Resulting Value
Student A discountPrice ((cin * .01) || (cin * .03) || (cin *.05)) || 0
Student B discPrice (.1 || .03 || .05 || 0) * cin

Evaluation of these variables allows us to check for functionally equal variables and

ignore differences in the algorithms students choose. While the algorithms students use

are important, this process will aid us by determining what the intended use of variables

are in a student's program. It can also help in identifying potential logical errors in a

program. If in the above example the user needed to divide cin by the decimals rather

than multiply Student B‟s variable would contain a divide by zero error.

This method of representing variables by the set of

all possible values will help us normalize student

programs; when combined with other control flow

details, it can help build a student program state-space

we can use to automatically generate hints. By using

the normalized variable values and mapping them to

the variable names students are using, perhaps in real-

time, we can offer hints that reference elements of an

individual student‟s program.

8. CONCLUSION
Linkage graphs concisely capture a program‟s data flow and make it possible to discover

the fundamental approach a student takes in solving a problem, which provides a good

foundation for hint generation using our MDP approach. The clustering of student

solutions means that a student‟s solution is very likely to be the same as that of another

student. Therefore, with a collection of previous student solutions to a problem, it is very

likely that we can find one that is on the same “route” as the student who is working on

the problem and we can use it as a basis for hints generation.

ACKNOWLEDGEMENTS
This work was partially supported by NSF grant IIS-0845997.

REFERENCES
ANDERSON, J.R. AND CONRAD, F. G., AND CORBETT, A. T. 1989. Skill Acquisition and the LISP Tutor.

Cognitive Science 13(4), 467-505.
ANDERSON, J. R., CORBETT, A. T., KOEDINGER, K. R., AND PELLETIER, R. 1995. Cognitive Tutors: Lessons

Learned. J. of the Learning Sciences, 4(2), 167-207.

ANDERSON, J.R. AND REISER, B. 1985. The Lisp tutor. Byte 10(4), 159-175.
BARNES, T. AND STAMPER, J. 2010. Automatic hint generation for logic proof tutoring using historical data.

Journal of Educational Technology & Society, 13 (1) - Special issue on Intelligent Tutoring Systems, 3-12

BARNES, T. AND STAMPER, J. 2010. Using Markov decision processes for student problem-solving visualization
and automatic hint generation. Handbook on Educational Data Mining. CRC Press.

BOYER, K. E., HA, E. Y., PHILLIPS, R. AND LESTER, J. C. 2011. The Impact of Task-Oriented Feature Sets on

HMMs for Dialogue Modeling. Proceedings of the 12th Annual SIGdial meeting on Discourse and
Dialogue, Portland, Oregon.

BOYER, K. E., PHILLIPS, R., INGRAM, A., HA, E. Y., WALLIS, M. D., VOUK, M. A. AND LESTER, J. C. 2011.

Investigating the Relationship Between Dialogue Structure and Tutoring Effectiveness: A Hidden Markov
Modeling Approach. The International Journal of Artificial Intelligence in Education (IJAIED).

FERNANDES, E. AND KUMAR, A. N. 2004. A Tutor on Scope for the Programming Languages Course. ACM

SIGCSE Bulletin, volume 36, issue 1 (March 2004), 90 -93.
HSIAO, I. AND BRUSILVSKY, P. 2011. The Role of Community Feedback in the Student Example Authoring

Process: an Evaluation of AnnotEx. British Journal of Educational Technology, 42(3), 482 – 499.

JIN, W. AND CORBETT, A. T. 2011. Effectiveness of Cognitive Apprenticeship Learning (CAL) and Cognitive
Tutors (CT) for Problem Solving Using Fundamental Programming Concepts. SIGCSE‟11: Proceedings of

the 42nd SIGCSE technical symposium on Computer Science Education, 305-310.

KUMAR, A. N. 2001. Learning the Interaction between Pointers and Scope in C++, Proceedings of The Sixth
Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE 2001),

Canterbury, UK.

LANE, H. AND VANLEHN, K. 2003. Coached Program Planning: Dialogue-Based Support for Novice Program
Design. Proceedings of the 34th SIGCSE technical symposium on Computer science education, 148-152

STAMPER, J., BARNES T. AND CROY M. 2010. Using a Bayesian knowledge base for hint selection on domain

specific problems. Proceedings of the 2010 Intl. Conf. on Educational Data Mining (EDM 2010). Pittsburgh,
PA, USA, June 11-13, 2010.

STAMPER, J., BARNES, T. AND CROY, M. 2010. Enhancing the automatic generation of hints with expert seeding.

Proceedings of the 2010 Intl. Conf. on Intelligent Tutoring Systems (ITS 2010). Pittsburgh, PA, USA, June
14-18, 2010.

cin >> price;

if (membership == “bronze”)

 discountPrice = price * 0.1;

else if (membership == “silver”)

 discountPrice = price * 0.3;

else if (membership == “gold”)

 discountPrice = price * 0.5;

else

 discountPrice = 0;

Figure 6. One possible Student A

solution for Table 5 row 1

