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________________________________________________________________________ 
Hint annotation is one of the most time consuming components of developing intelligent tutoring systems. One 

approach is to use educational data mining and machine learning techniques to automate the creation of hints 
from student problem-solving data. This paper describes a new technique to represent, classify, and use 

programs written by novices as a base for automatic hint generation for programming tutors. Our preliminary 

evaluation shows that this approach can effectively cluster programs and therefore has potential to be a source 
for automatically generated hints for novice programmers.  
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1. INTRODUCTION  
Hint annotation is one of the most time consuming components of developing intelligent 

tutoring systems. Barnes and Stamper developed a data-driven educational data mining 
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Figure 2. Equivalent programs 

a = b * c; 

d = e * f; 

d = e * f; 

a = b * c; 

cin >> b; 

cin >> c; 

cin >> d; 

a = b * c  / d; 

 

cin >> b; 

cin >> c; 

cin >> d; 

t  = b * c; 

a = t / d; 

 

cin >> b; 

cin >> c; 

cin >> d; 

t  = b / d; 

a = t  * c; 

 

Figure 1. Different 

orders but equivalent 

technique that uses a Markov decision process (MDP), created from past student data, to 

generate contextualized hints for students solving a specific problem. They have applied 

this domain-independent approach called the Hint Factory in a logic tutor called Deep 

Thought, and shown that it can provide hints for 70-90% of problem-solving steps, and 

hints prevent students from abandoning the logic tutor [Barnes2010a, Barnes2010b, 

Stamper2010a, and Stamper2010b].  

We plan to extend this MDP-based approach to create a 

data-driven programming tutor. To do so, we must find a 

representation for novice programs that shows the incremental 

steps taken towards complete, correct programs, and build a 

way to compare the current “target” program to another 

student‟s completed, more correct “source program” for hint generation. In this paper, we 

propose a new technique to represent and classify student programs for hint generation. 

This process requires us to create a state representation for programs that result in similar 

states for programs with the same behavior. For statements that do not have variable 

dependencies among each other, as in Figure 1, any ordering of these statements should 

not affect the program representation. We should also be able to classify seemingly 

different but equivalent programs. For example, the three program segments in Figure 2 

assign the same value to variable a.  

We propose to represent a program as a Linkage 

Graph. A linkage graph can represent a program in a 

concise manner but is also general enough to include 

all programs with the same fundamental structure. We 

also propose Condensed Linkage Graphs to classify 

equivalent programs like those in Figure 2.  

In the remainder of the paper, we present linkage graphs, how we might use them in 

hint generation, and a preliminary study to investigate the feasibility of the approach. All 

data are anonymized student lab tests from the Spring 2011 introductory programming 

course at UNC Charlotte.  There were about 300 students, but for most of this work we 

analyzed only those receiving 100% credit. We conclude by discussing how the approach 

might be combined with other features of novice programs to support the creation of 

data-driven tutors for novice programmers.  

2. RELATED WORK 
There have been various approaches to programming tutors. The earliest programming 

tutor, a LISP tutor, is a cognitive tutor [Anderson1985, Anderson1989]. Cognitive tutors 

encode domain knowledge and problem-solving strategies in a “cognitive model”, an 

expert system which can solve the problems in the many ways that students solve them. 

Cognitive tutors have been shown to speed up learning by as much as a factor of three 

[Anderson1995].  Jin‟s approach uses cognitive apprenticeship learning to scaffold 

students in expert problem solving strategies to construct programs [Jin2011]. Lane uses 

natural language dialog to help students develop pseudo code [Lane2003]. Boyer‟s 

approach uses machine learning to develop effective dialog strategies for a Java tutor 

[Boyer2011a, Boyer2011b].  Online peer review and tutoring is investigated in 

[Hsiao2011]. Debugging tutors are used to help master programming concepts 

[Kumar2001, Fernandes2004].   

3. LINKAGE GRAPH AS A COMPACT REPRESENTATION OF A PROGRAM 
A linkage graph for a program is a hierarchical directed graph, as shown in Figure 3, 

where nodes represent program statements that modify variables, and directed arcs 

indicate order dependencies. Control statements such as for and if are represented by 

nodes that encompass the entire statement, and can be expanded into their own linkage 



 

graphs, such as those shown in 

Tables 1 and 2. We call a single 

trace through the graph a linkage, 

which connects statements that 

modify the same variable, and arcs 

represent variable dependencies.  

A linkage graph is a set of 

linkages intersecting one another. 

The number of linkages 

intersecting a node is the number 

of distinct variables in the node.  

Now we introduce the node 

structure for if statements and for 

loops. Similar nodes can be 

similarly constructed for while 

loops and other control structures. The linkages that go through a node for a 

programming construct include the linkages for all the variables in the construct, 

excluding all local variables belonging to the construct. Local variables have their 

linkages in the sub-linkage graph inside the construct node. 

Table 1. An if node 

score<0&&score>100 score>=90&&score<=100 score>=80&&score<90 score>=0&&score<80 

linkage graph for  

{grade = „I‟;} 

linkage graph for  

{grade = „A‟; } 

linkage graph for  

{grade = „B‟;} 

linkage graph for  

{grade = „F‟;} 

Table 2. A for-loop node showing sub-linkage graph 

int i i =0 i<100 i++ 

sum=sum+i; 

The node for an if statement contains specifications for all branches. For each branch, 

the specification contains the logic expression for that branch and the linkage graph for 

statements under that branch. The logic expression for each branch should be a complete 

logic expression with no simplification. Table 1 shows an example if node.  

A for-loop node contains initialization/test/update specifications and the linkage 

graph for the loop body. An example for loop node is given in Table 2. 

4. CONDENSED LINKAGE GRAPHS 
Even though a linkage graph is a compact and concise representation of a program‟s data 

flow and control flow, it is sometimes difficult to determine whether two programs are 

equivalent directly from linkage graphs. 

For example, the linkage graph for the 

program in Figure 4 is different from the 

one in Figure 3, even though these two 

programs perform exactly the same set of 

operations. 

To identify equivalent computations, 

we propose condensed linkage graphs 

(CLG), which will be used to categorize 

equivalent linkage graphs. CLG is a 

linkage graph with all intermediate 

variables removed. A variable is 

considered to be an intermediate variable 

sum i 

double a, b, c, d, t; 

cin >> b;  cin >> c;  cin >> d; 

a =  b * c / d; 

cout << a; 

 

double a;      double b;    double c;       double d;            

 

                    cin >> b;      cin >> c;         cin >> d; 

      

a = b * c / d;               

                     

cout << a; 

Figure 3. The linkage graph for a program 

double a, b, c, d, t; 

cin >> b;  cin >> c;  cin >> d; 

t = b / d; 

a = t * c; 

cout << a; 

 

double a;    double b;    double c;    double d;    double t; 

 

               cin >> b;      cin >> c;     cin >> d; 

 

  

  a = t * c;                                                                t = b / d; 

               

      

  cout << a; 

Figure 4. Program with the same 

operations but different linkage graphs 



 

if it does not store an input value from the user or an output value of the program. To 

create a CLG, the nodes that reference an intermediate variable are merged. For example, 

we can obtain the CLG graph in Figure 4 by merging the 3 t-variable nodes in Figure 3.  

For programming constructs, such as if statements and loops, the condensation is 

performed locally. That is, even if a variable is not an input or output variable, if its value 

is used inside the structure or if it is a loop control variable, we keep this variable in the 

condensed linkage graph. We may also need to perform between-constructs analysis to 

determine whether nodes for programming constructs can be merged. 

5. LINKAGE GRAPH MATCHING 
A linkage graph is a sequence of statement nodes where arcs specify variable 

dependencies among nodes. For example, Table 3 shows the internal representation of the 

linkage graphs in Figures 4 and 5. This representation is missing information about parent 

nodes (i.e. the Preceded By column) to simplify discussion.  

Table 3. Implementation of the linkage graphs for programs in Figures 4 & 5. 

 Figure 4 Source Linkage Figure 5 Target Linkage 

Node # Node  Followed By Node Followed By 

1 double a; 8 double t; 8 

2 double b; 5 double b; 5 

3 double c; 6 double c; 6 

4 double d; 7 double d; 7 

5 cin >> b; 8 cin >> b; 8 

6 cin >> c; 8 cin >> c; Null (Need Hint) 

7 cin >> d; 8 cin >> d; 8 

8 a = b * c  / d; 9 t = b / d; Null (Need Hint) 

9 cout  << a; Null double a; Null 

 

Graph matching is based on the following observation: correct program solutions for 

a problem have the same number and type input variables. So, although students may use 

different variable names for particular quantities, their linkages will reveal the way each 

is used. Therefore if we normalize the variable names in programs, we can match one 

program to another. That is, we have to make sure that the same data item will be labeled 

with the same variable name across different linkage graphs. Starting with matching input 

variables and then matching computations, as we describe below, we can compare a 

work-in-progress program with an existing correct solution and provide hints accordingly 

based on the differences.    

A linkage graph is constructed for the work-in-

progress program. It will be compared with a 

collection of linkage graphs to determine which 

linkage graph is the best match. If no student 

linkage graph matches, we can use a condensed 

linkage graph generated from an expert solution. 

The condensed graph can then be expanded to match the work-in-progress program.  

Figure 5 shows a work-in-progress version of the complete program in Figure 3. Its 

linkage graph is shown on the right in Table 3. Assume the only linkage graph available 

for matching, the hint “source”, is the condensed linkage graph on the left in Table 3. By 

comparing these linkages, we can determine what is missing from the target work-in-

progress graph to obtain a complete program. The differences can be used to generate 

hints for students. We can compare each equation in the graph for matching values when 

we apply associative and commutative rules to get that a=t*c and generate the hint that 

Figure 5.  A work-in-progress 

version of the program in Figure 3 

double a, b, c, d, t; 

cin >> b;  cin >> c;  cin >> d; 

t =  b / d; 

 



 

the student should “multiply t by c to get a”. Table 4 shows how we expand the source 

linkage graph (Table 3 (left)) to match the work-in-progress graph (Table 3 (right)).  

Table 4. Entry 8 in Table 3 (left) is expanded to match the  

work-in-progress graph in Table 3 (right). 

ID Node Followed By 

8. a = b * c  / d;  

  

a = b/d * c;  

8a double t; 8b 

8b t = b/d; 8c (Use for hint (“multiply t with c.”) ) 

8c a = t * c; 9 

When generating hints, we will need to use variable names that are meaningful to 

students, not normalized ones.  A preliminary analysis of novice programs shows that 

students choose similar variable names.  We have written an algorithm to match the 

current work-in-progress program‟s variable names to those most commonly used in a 

data set.  In fact, of 300 instances of the first program in our introductory programming 

class at UNC Charlotte, 97 of them use the variable name houseArea. A simple k-means 

type algorithm suffices to match a student‟s program variables to those most commonly 

used across a set of solutions to a given programming assignment. 

6. EFFECTIVENESS OF CLGS FOR CATEGORIZING PROGRAMS 
To evaluate the effectiveness of condensed linkage graphs at categorizing students‟ 

programs, we analyzed student submissions for two homework assignments, one 

requiring students to write program with basic statements and one with for loops.  

For the first assignment, students need to write a program to calculate how much a 

person earns mowing a lawn. We analyzed 37 programs that were graded as being correct. 

If we don‟t apply the distributive rule to arithmetic expressions (i.e. a*b+a*c is 

considered different from a*(b+c)), 25 solutions (68%) have the same condensed linkage 

graph CLG-A while 12 others (32%) share the same condensed linkage graph CLG-B. If 

we apply the distributive rules (i.e. a*b+a*c is considered the same as a*(b+c)), CGL-A 

and CGL-B are equivalent; so 37 solutions have the same condensed graph. 

For the second assignment, students need to write a program to determine the number 

of wrong answers a person gives in a driver‟s license test. We randomly chose 10 correct 

solutions and found that three of them (30%) belong to one category, three (30%) belong 

to the second category, while two (20%) are very close to the second category. 

7. ANOTHER APPROACH IN REPRENSENTING PROGRAMS 
To capture both the control and data flow of the student‟s submitted work we can embed 

the program‟s branching into each variable.  We can perform a static program analysis 

and track the declaration, use, and assignment of each variable in the program.  The result 

is a set of regular expressions that describe all the possible values for each of the 

variables used in the program. We can then normalize the values in this representation to 

the base inputs.  As shown in Table 5, students used if statements in different ways for a 

lab assignment. Student A‟s solution represented by Table 5 row 1 is shown in Figure 6. 

Table 5: Regular expressions for all possible variable values 

SID Variable Name Resulting Value 
Student A discountPrice ((cin * .01) || (cin * .03) || (cin *.05)) || 0 
Student B discPrice (.1 || .03 || .05 || 0) * cin 

Evaluation of these variables allows us to check for functionally equal variables and 

ignore differences in the algorithms students choose.  While the algorithms students use 

are important, this process will aid us by determining what the intended use of variables 

are in a student's program. It can also help in identifying potential logical errors in a 

program.  If in the above example the user needed to divide cin by the decimals rather 

than multiply Student B‟s variable would contain a divide by zero error. 



 

This method of representing variables by the set of 

all possible values will help us normalize student 

programs; when combined with other control flow 

details, it can help build a student program state-space 

we can use to automatically generate hints.   By using 

the normalized variable values and mapping them to 

the variable names students are using, perhaps in real-

time, we can offer hints that reference elements of an 

individual student‟s program. 

8. CONCLUSION 
Linkage graphs concisely capture a program‟s data flow and make it possible to discover 

the fundamental approach a student takes in solving a problem, which provides a good 

foundation for hint generation using our MDP approach. The clustering of student 

solutions means that a student‟s solution is very likely to be the same as that of another 

student. Therefore, with a collection of previous student solutions to a problem, it is very 

likely that we can find one that is on the same “route” as the student who is working on 

the problem and we can use it as a basis for hints generation.  
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cin >> price; 

if (membership == “bronze”) 

      discountPrice = price * 0.1; 

else if (membership == “silver”) 

      discountPrice = price * 0.3; 

else if (membership == “gold”) 

      discountPrice = price * 0.5; 

else 

     discountPrice = 0; 

 
Figure 6.  One possible Student A 

solution for Table 5 row 1 


