
JMLR: Workshop and Conference Proceedings 1: 1-16 KDD Cup 2010

Feature Engineering and Classifier Ensemble for KDD Cup

2010

Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G. McKenzie,
Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan
Wei, Jui-Yu Weng, En-Syu Yan, Che-Wei Chang, Tsung-Ting Kuo, Yi-Chen
Lo, Po Tzu Chang, Chieh Po, Chien-Yuan Wang, Yi-Hung Huang, Chen-Wei
Hung, Yu-Xun Ruan, Yu-Shi Lin, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin
Department of Computer Science and Information Engineering, National Taiwan University

Taipei 106, Taiwan

Editor:

Abstract

KDD Cup 2010 is an educational data mining competition. Participants are asked to
learn a model from students’ past behavior and then predict their future performance.
At National Taiwan University, we organized a course for KDD Cup 2010. Most student
sub-teams expanded features by various binarization and discretization techniques. The
resulting sparse feature sets were trained by logistic regression (using LIBLINEAR). One sub-
team considered condensed features using simple statistical techniques and applied random
forest (through Weka) for training. Initial development was conducted on an internal split
of training data for training and validation. We identified some useful feature combinations
to improve the performance. For the final submission, we combined results of student sub-
teams by regularized linear regression. Our team is the first prize winner of both tracks
(all teams and student teams) of KDD Cup 2010.

Keywords: Educational data mining, feature engineering, classifier ensemble, linear
classification, logistic regression, random forest

1. Introduction

KDD Cup 2010 is an educational data mining competition in which participants are charged
with predicting student algebraic problem performance given information regarding past
performance. This prediction task presents not only technical challenges for researchers,
but is also of practical importance, as accurate predictions can be used, for instance, to
better understand and ultimately optimize the student learning process.

Specifically, participants were provided with summaries of the logs of student interac-
tion with intelligent tutoring systems. Two data sets are available: algebra 2008 2009 and
bridge to algebra 2008 2009. In the rest of this paper, we refer to them as A89 and B89,
respectively. Each data set contains logs for a large number of interaction steps. There
are 8,918,055 steps in A89, while 20,012,499 steps in B89. Some interaction log fields are
included in both training and testing sets, such as student ID, problem hierarchy including
step name, problem name, unit name, section name, as well as knowledge components (KC)
used in the problem and the number of times a problem has been viewed. However, some

c©2010 .



log fields are only available in the training set: whether the student was correct on the first
attempt for this step (CFA), number of hints requested (hint) and step duration information.

The competition regards CFA, which could be 0 (i.e., incorrect on the first attempt)
or 1, as the label in the classification task. For each data set, a training set with known
CFA is available to participants, but a testing set of unknown CFA is left for evaluation.
Subsequently we call the training and testing set T and T̃ , respectively. The evaluation
criterion used is the root mean squared error (RMSE). In the competition, participants
submitted prediction results on the testing set to a web server, where the RMSE generated
based on a small subset of the testing data is publicly shown. This web page of displaying
participants’ results is called the “leader board.”

At National Taiwan University, we organized a course for KDD Cup 2010. Our members
include three instructors, two TAs, 19 students and one RA. The students were split into six
sub-teams. Every week, each sub-team presented their progress and participated in discus-
sion with other sub-teams. The TAs helped to build an internal competition environment
such that each sub-team could try their ideas before external submission.

In the beginning we suspected that this year’s competition would be very different from
several past KDD Cups. Domain knowledge seems to be quite important for educational
systems. Indeed, Educational Data Mining is an entire research field in itself with specialized
models and techniques to address the unique types of data that are collected in educational
settings.1

Contrary to several past KDD Cups, the meanings of the data set entries were made
available this year. This means that feature engineering is to play a vital role. Also, tempo-
ral information is important as students are learning during the tutoring process of which
the logs are a record. This property seems to differentiate the task from traditional clas-
sification, which assumes data independence. Interestingly, after exploring some temporal
approaches such as Bayesian networks, we found that it was easier to incorporate useful
information into a vector-space model and then train a traditional classifier. Therefore,
our focus was shifted to identify useful features by taking domain knowledge, temporal
information, and other concepts into consideration.

The following sections describe our solution in detail. The architecture of our approach
is outlined in Section 2. Sections 3 and 4 focus on diversified feature engineering. Ensemble
techniques are described in Section 5. Section 6 shows our experimental results. Some
observations are discussed in Section 7.

2. Some Initial Settings and Our Approach

This section discusses the use of a validation set and introduces our solution architecture.

2.1 Validation Set Generation

Due to the nature of competition, participants tend to optimize the scores on the leader
board. However, overfitting leader board results is undesired as the leader board shows the
RMSE of only a small portion of the testing set. To avoid overfitting the leader board, our

1. Major educational data mining conferences include, for example, International Conference on Intelligent
Tutoring Systems and International Conference on Educational Data Mining.

2



Feature engineering and classifier ensemble for KDD Cup 2010

A unit of problems

problem 1 ∈ V

problem 2 ∈ V

...

last problem ∈ Ṽ

Figure 1: Generation of the validation set Ṽ .
For each unit of problems, the last problem
was used for validation, while all other were
for training.

A89 B89

Internal training (V ) 8,407,752 19,264,097

Internal validation (Ṽ ) 510,303 748,402
External training (T ) 8,918,055 20,012,499

External testing (T̃ ) 508,913 756,387

Table 1: Number of steps in internal and
external data sets

sub-teams focused on the internal competition environment, in which validation sets were
provided by splitting the external training set (T ) into two parts: an internal training set
(V ) and an internal testing set (Ṽ ).

Care must be taken when choosing a validation technique, as some are only appropriate
when certain criteria are met. For example, cross validation (CV) is a common technique
applied in document classification problems. However, for this competition, CV is likely not
a suitable approach due to the temporal property of the data. To generate a validation pair
(V, Ṽ ) with a distribution similar to the distribution of the challenge training and testing
pair (T, T̃ ), we collected the last problem of each unit in T as Ṽ , and the remaining part as
V . Figure 1 shows the partition of a unit of data. The procedure is same as the generation
of (T, T̃ ). The validation pairs thus preserve a similar distribution as compared to (T, T̃ ).
Sizes of validation sets for A89 and B89 are given in Table 1.

2.2 Architecture of Our Solution

Because of the temporal relationship between data points, initially we tried methods such
as Bayesian networks. However, we found that it was easier to incorporate information
into independent vectors of data instances and train a traditional classifier. Therefore, the
main task was to extract useful features and apply suitable classifiers. Our approach can be
split into the following steps. First, each student sub-team extracted different features from
the data sets according to their analysis and interpretation of the data, and chose different
classifiers for learning based on the internal set. The feature engineering approaches can be
categorized into two types: sparse feature sets generated by binarization and discretization
techniques, and condensed feature sets using simple statistics on the data. Finally, we
applied ensemble methods on the testing results from sub-teams. The procedure is shown
in Figure 2. The detailed description of each step is presented in the following sections.

3. Feature Engineering: Sparse Features

We describe our approach of transforming logs of student interaction to sparse feature
vectors and applying linear classifiers.

3



Problem

Sparse
Features

Condensed
Features

Ensemble

Figure 2: Solution architecture of our approach

3.1 Basic Sparse Features (Our Baseline Setting)

Some basic yet important features considered in our early experiments can be categorized
into two types: student name, unit name, section name, problem name, step name and KC are
categorical features, while problem view and opportunity are numerical features.2

We chose to expand a categorical feature into a set of binary features. For example, there
are 3,310 students in A89. The feature vector then contains 3,310 binary features to indicate
the student who finished the step. For numerical features, due to large value ranges, we
applied various scaling methods. One simple way is to linearly scale each numerical feature
to the range [0, 1]. We have also checked nonlinear scaling methods, where for generating
Figure 3 later in the experiment, we considered

log(1 + x).

Using the above procedure, the resulting numbers of features for A89 and B89 are
about 1 million and 200 thousand, respectively. Owing to the categorical expansion, each
instance contains very few non-zero elements, so the data set is very sparse. Though five
out of six student sub-teams took this approach of feature expansion, their own baseline
implementations were slightly different from the one described above. They may use only
a subset of features or apply different scaling methods for numerical features.

3.2 Feature Combination

Due to the large training size, nonlinear classifiers like kernel training methods are perhaps
not an ideal solution due to training time restrictions. Alternatively, linear classifiers can
be used; see details in Section 3.5. However, linear classifiers are not capable of exploit-
ing possible feature dependence. Following the polynomial mapping in kernel methods or
bigram/trigram in natural language processing, we can use feature combinations to indi-
cate some relationships. Because all feature meanings are available, we are able to manually
identify some useful pairs of features. For example, hierarchical information can be modeled
by indicating the occurrences of the following pairs: (student name, unit name), (unit name,
section name), (section name, problem name) and (problem name, step name). In addition

2. These two features have integer values, so they can also be considered categorical.

4



Feature engineering and classifier ensemble for KDD Cup 2010

to two-feature combinations, we have also explored combinations of higher-order features.
Results in the experiment section show that feature combinations effectively improve RMSE.

3.3 Temporal Features

Because learning is a process of skill-improving over time, temporal information should
be taken into consideration. There are some well-established techniques, utilizing a quite
different data model than traditional classification problems, to model student latent at-
tributes such as knowledge tracing and performance factor analysis (Gong et al., 2010).
We considered a simple and common approach to embed temporal information into feature
vectors. For each step, step name and KC values from the previous few steps were added as
features.

3.4 Other Ways for Generating Features

During the competition, we tried many other ways to generate features. Here we describe
some of them.

In our baseline setting in Section 3.1, KCs are obtained by splitting the KC string with
“∼∼” following the suggestion at the “Data Format” page on the competition website.
Then binary features are used to indicate the KCs associated with each step. However, this
setting results in many similar KCs. For example, “Write expression, positive one slope” and
“Write expression, positive slope” indicate similar concepts, but are considered different.
To remedy this problem, we tokenized KC strings and used each token as a binary feature.
For example a KC “Write expression, positive slope” will cause four features, “Write,”
“expression,” “positive” and “slope” to have true values. Our experiences indicated that
this method for generating KC features is very useful for the data set A89. We also used
techniques such as regular expression matching to parse knowledge components, but did
not reach a setting clearly better than the one used for the baseline.

For problem name and step name, we tried to group similar names together via clustering
techniques. For example, two step names “−18+x = 15” and “ 5+x = −39” differ only in
their numbers, so they can be considered as the same type of steps. This approach effectively
reduced the number of features without deteriorating the performance. Most of the student
sub-teams applied this approach. We have also tried to model the learning experience of
students. A student’s performance may depend on whether that student had previously
encountered the same step or problem. We added features to indicate such information.
Results showed that this information slightly improves the performance.

Earlier problem view was considered as a numerical feature. In some situations, we
treated it as a categorical one and expanded it to several binary features. This setting is
possible because there are not too many problem view values in training and testing sets.
One student sub-team reported that this modification slightly improved RMSE.

3.5 Linear Classification and Probability Outputs

In our classification process, for each step we used its CFA as label yi

yi =

{

1 if CFA = 1,

−1 if CFA = 0,

5



and extracted a sparse feature vector xi. Hence we assume the training set includes
(xi, yi), i = 1, . . . , l. Due to the high dimensionality of xi, we only considered linear clas-
sifiers. In particular, we used logistic regression, which assumes the following probability
model:

P(y | x) =
1

1 + exp(−ywTx)
.

Then regularized logistic regression solves the following optimization problem

min
w

1

2
w

T
w + C

l
∑

i=1

log
(

1 + e−yiw
T
xi

)

, (1)

where w
T
w/2 is the L2-regularization term and C is a penalty parameter. Once w is

obtained, the decision function is

sgn(wT
x) =

{

1 if wT
x > 0,

0 otherwise.

L2 regularization leads to a dense vector w, so we have also considered L1-regularized
logistic regression to obtain a sparse w:

min
w

‖w‖1 + C
l

∑

i=1

log
(

1 + e−yiw
T
xi

)

. (2)

We submitted labels sgn(wT
x) or probability values 1/(1+exp(−w

T
x)) as our predictions.

Results showed that using probability values give a smaller RMSE. We can easily explain
this result. Assume p is the predicted probability and the true label is 0. For a wrongly
predicted data point, the error of predicting a label and a probability value is 1 and (1−p)2,
respectively. If a data point is correctly predicted, then the error is 0 and p2, respectively.
Since x2 is an increasing function in [0, 1], the gain of reducing 1 to (1− p)2 is often larger
than the loss of increasing 0 to p2.

In our development, we used a large-scale linear solver LIBLINEAR (Fan et al., 2008),
which can effectively train very large data. It took only about one hour to train our largest
setting for the data B89, which contains more than 20 million instances and 30 million
features.

We also checked linear support vector machine (SVM) solvers in LIBLINEAR, but the
result was slightly worse than logistic regression.

4. Feature Engineering: Condensed Features

In contrast to generating sparse features in Section 3, this section discusses an approach
that exploits only a small feature set.

4.1 Correct First Attempt Rates as Feature Values

We proposed replacing each categorical feature with a numerical one by using the “correct
first attempt rate” (CFAR). Take the student name feature as an example. The CFAR of a

6



Feature engineering and classifier ensemble for KDD Cup 2010

specific student name “sid” is defined as

CFAR ≡
#steps with student name = sid and CFA = 1

#steps with student name = sid
.

For each step whose student name is sid, the above CFAR would be used as the corresponding
feature value. This setting directly connects a feature and CFA, which is now the target
for prediction. We have considered CFARs for student name, step name, problem name,
KC, (problem name, step name), (student name, problem name), (student name, unit name)
and (student name, KC). Feature combinations are considered following the discussion in
Section 3.2 for sparse features. For the KC feature, we consider the whole string as the ID
in calculating CFAR. We cannot split the string to several KC features as in Section 3.

4.2 Learning Temporal Information

We developed two approaches to extract temporal information.
First, we suspect that the performance on the current problem is related to the same

student’s past performances on similar types of problems. Thus we use the average CFA and
average hint on the student’s previous records (up to six depending on the availability) with
the same KC to model the student’s recent performance on similar problems.3 A binary
feature is also added to indicate whether such previous records exist.

Second, as people have higher chance to forget more ancient events, the time elapsed
since the student saw a problem with the same KC may reveal the performance of the
student. For the current step, we find the KC and check if the student has seen a step with
the same KC within

same day, 1-6 days, 7-30 days, or more than 30 days.
Therefore, four binary features are used to indicate how familiar a student is with the given
KC.

4.3 Training by Various Classifiers

In addition to features mentioned above, two numerical features opportunity and problem

view were first scaled by
x

x+ 1
,

then linearly scaled to the interval [0, 1]. Thus the feature set contains 17 features:
• Eight CFARs; see Section 4.1.
• Seven temporal features; see Section 4.2.
• Two scaled numerical features for opportunity and problem view.

Due to the small feature size, we were able to apply various classifiers in Weka including
Random Forest (Breiman, 2001) and AdaBoost (Freund and Schapire, 1997). Random forest
is an ensemble classifier consisting of many decision trees, while AdaBoost is a method which
adaptively improves the performance by a series of weak classifiers (e.g., decision stumps).
We also used logistic regression via LIBLINEAR. To save the training time, we considered a

3. In the testing set, neither CFA nor hint is available. Because testing data were generated using the last
problem of a unit (see Figure 1), finding CFA and hint values in the student’s previous records (with the
same KC) is not a problem.

7



subset of training data and split the classification task to several independent ones according
to unit name. Specifically, for each unit name, we collected the last problem from units with
the same name to form a training subset. A classification method was then applied to build
a model. In testing, we checked the testing point’s unit name to know which model to use.
Results showed that random forest gives the best result. Regarding the training time, due
to the small feature size, we could efficiently train a random forest on the training subset
of a unit in a few minutes.

5. Classifier Ensemble

Many past competitions (e.g., Netflix Prize) showed an ensemble of results from different
methods can often boost the performance. The ensemble approach we adopted was to find
a weight vector to linearly combine the predicted probabilities from sub-teams. We did
not use a nonlinear ensemble because a complex ensemble may lead to overfit. We checked
several linear models including simple averaging, linear SVM, linear regression and logistic
regression. Probably because linear regression directly minimizes RMSE, which is now the
evaluation criterion, we found that it gives the best leader board result. Given l testing
steps and k prediction probabilities pi ∈ [0, 1]l, i = 1, . . . , k, regularized linear regression
solves the following optimization problem:

min
w

‖y − Pw‖2 +
λ

2
‖w‖2, (3)

where λ is the regularization parameter, y is the CFA vector, and P = [p1, . . . ,pk]. If
λ = 0, the problem becomes a standard least-square problem. In SVM or logistic regression,
sometimes we add a bias term b so that Pw becomes Pw + be, where e = [1, . . . , 1]T . In
our implementation, we also replaced ‖w‖2 with ‖w‖2 + b2.

The obtained weight w is used to calculate Pw for combining prediction results. How-
ever, as components of Pw may be out of the interval [0, 1], we employ a simple truncation
to avoid such a situation:

min(1,max(0, Pw)), (4)

where 1 is the vector with all ones, and 0 is the vector with all zeros. We also explored
sigmoid transformation and linear scaling for modifying Pw to [0, 1]l, but results were not
better.

The analytical solution of (3) is

w = (P TP +
λ

2
I)−1P T

y. (5)

The main difficulty to apply (5) is that y is unknown. We considered the following two
approaches:

1. Use validation data to estimate w. Recall that we split the training set T to two sets
V and Ṽ for internal training an validation, respectively; see Section 2.1. Our student
sub-teams generated two prediction results on Ṽ and T̃ :

Train V ⇒ Predict Ṽ to obtain p̃i,

Train T ⇒ Predict T̃ to obtain pi.

8



Feature engineering and classifier ensemble for KDD Cup 2010

RMSE

features

0.2895

0.2843 0.2816
0.2815

0.2985

0.2883 0.2875

0.2836

A89

B89

Basic

+Combination

+Temporal

+ More combination

Figure 3: Experiment result of how incremental sparse features improve RMSE. Reported
RMSEs are leader board results.

Let P̃ be the matrix of collecting all predictions on the validation set and we have the
corresponding true labels ỹ. Then in (3) we used ỹ and P̃ to obtain w. For the final
prediction, we calculated Pw and applied the truncation in (4).

2. Use leader board information to estimate P T
y in (5). This approach follows from Töscher

and Jahrer (2009). By the definition of RMSE,

ri ≡

√

‖pi − y‖2

l
,

so

p
T
i y =

‖pi‖
2 + ‖y‖2 − lr2i

2
. (6)

As ri and ‖y‖ are unavailable, we estimated them by

ri ≈ r̂i and ‖y‖2 ≈ lr̂2
0
,

where r̂i is the RMSE on the leader board by submitting pi as the prediction result and
r̂0 is the RMSE by submitting the zero vector.

We conducted experiments to check which of the above two methods is better. See
Section 6 for our setting (including the selection of λ) for the final submission.

6. Experiments and Final Results

We used the leader board to test the effectiveness of different types of features. We checked
four settings by incrementally adding basic sparse features, combined features, temporal
features and more combined features. See details in Table 2(a). The number of features for
each setting is shown in Table 2(b). We conducted this experiment with the L1-regularized
logistic regression solver in LIBLINEAR with C = 1. The leader board results are shown in
Figure 3. Clearly, some feature combinations significantly improve the RMSE.

Next, Table 3 lists our leader board results submitted during the competition. “Basic
sparse features” means that we used the baseline setting described in Section 3.1. For “Best
sparse features,” the improvement of reducing RMSE by around 0.015 is very significant.

9



Table 2: Detailed information of our feature combinations and our temporal features.

(a) List of features

+Combination (student name, unit name), (unit name, section name), (section
name, problem name), (problem name, step name), (student name,
unit name, section name), (unit name, section name, problem

name), (section name, problem name, step name), (student name,
unit name, section name, problem name) and (unit name, section
name, problem name, step name)

+Temporal Given a student and a problem, add KCs and step name in each
previous three steps as temporal features.

+More combination (student name, section name), (student name, problem name),
(student name, step name), (student name, KC) and (student
name, unit name, section name, problem name, step name)

(b) Number of features

#features A89 B89

Basic 1,118,985 245,776
+Combination 6,569,589 4,083,376
+Temporal 8,752,836 4,476,520
+More combination 21,684,170 30,971,151

Table 3: Leader board results by different approaches.

A89 B89 Avg.

Basic sparse features 0.2895 0.2985 0.2940
Best sparse features 0.2784 0.2830 0.2807
Best condensed features 0.2824 0.2847 0.2835
Best ensemble 0.2756 0.2780 0.2768
Best leader board 0.2759 0.2777 0.2768

For the condensed representation, the best result comes from training random forest with
depth 7. It is surprising that the performance (in particular, on B89) of using 17 features
is competitive with the sparse approach with millions of features.

For the classifier ensemble, we collect 19 results from 7 sub-teams (six student sub-teams
and one RA sub-team). We make sure that each result comes from training a single classifier
instead of combining several predictions. While not shown in the table, results are improved
by various ensemble strategies including the simple average. For the “Best ensemble results”
in Table 3, we use linear regression for combining 19 results. To select λ in (3), we gradually
increased λ until the leader board result started decreasing. This procedure, conducted in
the last several hours before the deadline, was not very systematic, but this is unavoidable
in participating in a competition. Our best A89 result is by estimating P T

y in (5) and
using λ = 10. See the second method in Section 5. For the B89, the best result is by using

10



Feature engineering and classifier ensemble for KDD Cup 2010

Table 4: Challenge final result.

Rank Team name Leader board Cup

1 National Taiwan University 0.276803 0.272952
2 Zhang and Su 0.276790 0.273692
3 BigChaos @ KDD 0.279046 0.274556
4 Zach A. Pardos 0.279695 0.276590
5 Old Dogs With New Tricks 0.281163 0.277864

the validation set to estimate w, which corresponds to the first method in Section 5. The
parameter λ is zero (i.e., no regularization).

In Table 3, we also show the best leader board result (by another team). Our final
submissions ranked 10th on the leader board. However, from the last two rows of Table 3,
the difference between ours and the best leader board result is very small. At that time,
we hoped our solution did not overfit leader board too much and might be better on the
complete challenge set.

Table 4 showed the final KDD Cup results of the top five teams. In general, Cup scores
are slightly better than the leader board results.

7. Discussion and Conclusions

There were many submissions in the last week before the deadline, in particular in the last
two hours. Each top team including ourselves tried to achieve better leader board results.
Whether such a large number of submissions resulted in overfitting remains a concern.

We believe that a crucial point to our ensemble’s success is feature diversity. Different
sub-teams tried various ideas guided by their human intelligence. In summary, results
showed that our feature engineering and classifier ensemble are useful for our approach in
KDD Cup 2010 and maybe other educational systems.

Acknowledgements

We thank the organizers for organizing this interesting and fruitful competition. We also
thank National Taiwan University for providing a stimulating research environment.

References

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

11



Y. Gong, J. E. Beck, and N. T. Heffernan. Comparing knowledge tracing and performance
factor analysis by using multiple model fitting procedures. Intelligent Tutoring Systems,
2010.

A. Töscher and M. Jahrer. The BigChaos solution to the Netflix grand prize. 2009.

12


