### Article

## Estimates for the number of Boolean functions realized by an initial Boolean automaton with three constant states

The problem of realization of Boolean functions by initial Boolean automata with constant states and *n* inputs is considered. Such automata are those whose output function coincides with one of *n*-ary constant Boolean functions 0 or 1 in all states. The exact value of the maximum number of *n*-ary Boolean functions, where *n* > 1, realized by an initial Boolean automaton with three constant states and *n* inputs is obtained.

An integer polynomial p of n variables is called a threshold gate for a Boolean function f of n variables if for all *x∈{0,1}n f(x)=1* if and only if p(x) > 0. The weight of a threshold gate is the sum of its absolute values. In this paper we study how large a weight might be needed if we fix some function and some threshold degree. We prove *2Ω(22n/5) *lower bound on this value. The best previous bound was *2Ω(2n/8)* (Podolskii, 2009). In addition we present substantially simpler proof of the weaker *2Ω(2n/4) *lower bound. This proof is conceptually similar to other proofs of the bounds on weights of nonlinear threshold gates, but avoids a lot of technical details arising in other proofs. We hope that this proof will help to show the ideas behind the construction used to prove these lower bounds.

The problem of realization of Boolean functions by initial Boolean automata with constant states and n inputs is considered. Initial Boolean automaton with constant states and n inputs is an initial automaton with output such that in all states output functions are n-ary constant Boolean functions 0 or 1. All sets of the maximum cardinality of n-ary Boolean functions realized by an initial Boolean automaton with two or three constant states provided to the possibility of an arbitrary order of input values is obtained.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.